期刊文献+

Effect of Laser Field and Mechanical Force on Deoxyribonucleic Acid Melting

Effect of Laser Field and Mechanical Force on Deoxyribonucleic Acid Melting
下载PDF
导出
摘要 We propose a physics method to study the effect of laser field and mechanical force on the melting process of double-stranded deoxyribonucleic acid (DNA). A two-dimensional lattice model is established for DNA molecules stuck on the surface, and the stretching energy of the hydrogen bond and stacking energy for each DNA molecule are calculated by using a nonlinear potential. A real-time algorithm is employed to deal with the dynamics process of DNA melting. Numerical results explain the experimental observations. The spatial distribution of the laser field determines the sequences of DNA melting. The simulation has shown the dependence of the final number of melted DNA on the laser field and mechanical force. We propose a physics method to study the effect of laser field and mechanical force on the melting process of double-stranded deoxyribonucleic acid (DNA). A two-dimensional lattice model is established for DNA molecules stuck on the surface, and the stretching energy of the hydrogen bond and stacking energy for each DNA molecule are calculated by using a nonlinear potential. A real-time algorithm is employed to deal with the dynamics process of DNA melting. Numerical results explain the experimental observations. The spatial distribution of the laser field determines the sequences of DNA melting. The simulation has shown the dependence of the final number of melted DNA on the laser field and mechanical force.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第7期288-290,共3页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 10834014, 10674173 and 30770517, and the National Basic Research Program of China under Grant No 2009CB930704.
  • 相关文献

参考文献31

  • 1Liverpool T B, Harris S A and Laughton C A 2008 Phys. Rev. Lett. 100 238103.
  • 2Kim J H, Puder M and Soberman R J 1996 Biotechniques 20 954.
  • 3Garel T, Monthus C and Orland H 2001 Europhys. Lett. 55 132.
  • 4Bugaut A and Balasubramanian S 2008 Biochemistry 47 689.
  • 5Paiw A M and Sheardy R D 2004 Biochemistry 43 14218.
  • 6Drobnak I, Serucnik M, Lah J and Vesnaver G 2007 Acta Chim. Slovenica 54 445.
  • 7Breslauer K J, Frank R, Blocker H and Marky L A 1986 Proc. Natl. Acad. Sci. U.S.A. 83 3746.
  • 8Koumoto K, Ochiai H and Sugimoto N 2008 Chem. Lett. 37 864.
  • 9Pan B Y, Zhang L Y, Dou S X and Wang P Y 2009 Biochem. Biophys. Res. Commun. 388 137.
  • 10Nakano S, Karimata H, Ohmichi T and Kawakami J 2004 J. Am. Chem. Soc. 126 14330.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部