期刊文献+

不确定性中的随机性和模糊性 被引量:1

The Randomness and Fuzziness of Uncertainty
下载PDF
导出
摘要 随着不确定性研究的深入,世界的不确定性特征越来越得到学术界的普遍认可。人工智能中的不确定性主要是由随机性和模糊性引起的。人们用概率论和数理统计研究随机性,将"随机性"用"概率"予以量化表示,而贝叶斯理论等就成为人工智能中处理不确定性的重要工具。对于模糊性,人们用模糊数学作为工具来研究,在经典模糊集合论中引入"隶属度"来更好地处理人工智能中的模糊性问题。近十几年来,在随机数学和模糊数学的基础上,亦提出了用云模型来统一刻画语言值中大量存在的随机性、模糊性以及两者之间的关联性。随着不确定性研究的深入,必将为人工智能的应用提供更广阔的空间。 With the deep going study of uncertainty,the uncertainty characteristics of the world has been more and more widely recognized by academics.The uncertainty in artificial intelligence is mainly caused by randomness and fuzziness.People use probability theory and mathematical statistics to study the randomness,using the "probability" to quantify "randomness".The Bayesian theory has become an important tool for dealing with the uncertainty in artificial intelligence.People use fuzzy math as a tool to study fuzzy.We introduced the "membership" in classical fuzzy set theory to better deal with the ambiguity problem in artificial intelligence.Over the last decade,based on the random and fuzzy mathematics,we unified randomness,ambiguity,and the correlation between them which exit in the linguistic with the cloud model.With a detailed research of uncertainty,the application of artificial intelligence will be provided more room.
作者 利珊
机构地区 嘉应学院
出处 《金华职业技术学院学报》 2010年第3期46-48,共3页 Journal of Jinhua Polytechnic
关键词 人工智能 不确定性 随机性 模糊性 artificial intelligence uncertainty randomness fuzziness
  • 相关文献

参考文献7

二级参考文献20

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:897
  • 2王梓坤.论混沌与随机[J].北京师范大学学报(自然科学版),1994,30(2):199-202. 被引量:16
  • 3李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1250
  • 4程田盛丰.人工智能原理与应用--专家系统、机器学习、面向对象的方法[M].北京:北京理工大学出版社,1993..
  • 5P.H.温斯顿.人工智能[美].北京:科学出版社,1987..
  • 6CHICKERING D. Learning equivalence classes of Bayesian networks structures [A]. In: Horvitz E, Jensen F ed.Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence [C]. San Francicso, CA: Morgan Kaufmann Publishers, Inc. 1996. 54~61.
  • 7HECKMAN D, MANDANI A, WELLMAN M. Real -World applications of Bayesian networks [ J ]. Communications of the ACM, 1995, 38(3) :38 - 45.
  • 8COOPER G, HERSKOVITS E. A Bayesian method for the introduction of probabilistic networks from data [J ]. Mmachine Learning, 1992, 9(4): 309-347.
  • 9WALLEY P. Measures of uncertainty in expert systems [J ].Artificial Intelligence, 1996, 83(1): 1-58.
  • 10程田盛丰.人工智能原理与应用—专家系统、机器学习、面向对象的方法[M].北京:北京理工大学出版社,1993..

共引文献424

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部