期刊文献+

广义块严格对角占优矩阵的判定 被引量:1

Criteria for Generalized Block Strictly Diagonally Dominant Matrices
下载PDF
导出
摘要 本文给出了判定广义块严格对角占优矩阵的几个充分条件,并用相应的数值实例说明了这些结果的有效性. In this paper,we obtain several sufficient conditions for identifying generalized block strictly diagonally dominant matrices.Their effectiveness is illustrated by numerical example.
作者 肖秋菊 张娟
出处 《南华大学学报(自然科学版)》 2010年第1期32-35,共4页 Journal of University of South China:Science and Technology
基金 国家自然科学基金资助项目(10971176)
关键词 广义严格对角占优矩阵 Α-对角占优矩阵 广义块严格对角占优矩阵 α-块对角占优矩阵 α-chain diagonally dominant matrix generalized strictly diagonally dominant matrix α-chain block diagonally dominant matrix generalized block strictly diagonally dominant matrix
  • 相关文献

参考文献5

二级参考文献12

共引文献60

同被引文献10

  • 1CVETKPVIC L, KOSTIC V, BRU R, et al. A simple generalization of Gerschgorin' s theorem [ J ]. Advances in Computational Mathematics, 2011,35 : 271-280.
  • 2FEINGOLD D G, VARGA R S. Block diagonally dominant matrices and generalization of Gerschgorin' s circle theorem [ J ]. Pac J Math,1962,12:l 241-1 250.
  • 3逢明贤.矩阵普论[M].长春:吉林大学出版社,1990.
  • 4CVETKPVIC L, KOSTIV V, VARGA R S. A new Gerschgorin -type eigenvalue inclusion set [ J ]. Electron Trans Numer Anal, 2004,8 : 73-80.
  • 5HUANG T Z. A note on generalized diagonally dominant matrices [ J ]. Linear Algebra Appl, 1995,225:237-242.
  • 6CVETKVIC L. H - matrix theory vs. eigenvalue localization[ J]. Numerical Algorithms ,2006,42:229-245.
  • 7VARGA R S. Minimal Gerschgorin set for partitioned matrices [ J]. SIAM J Numer Anal, 1970,7:493-507.
  • 8VARGA R S. Gerschgorin- type eigenvalue inclusion theorems and their sharpness[ J]. Electron Trans Anal,2001,12:113- 133.
  • 9VARGA R S, KRAUTSTENGL A. On Gerschgorin - type problems and ovals of cassini [ J ]. Electron Trans Anal, 1999,8 : 15- 20.
  • 10LI C Q, LI Y T. Generalizations of Brauer' s eigenvalue localization theorem[ J ]. Electronic Journal of Linear Algebra, 2011, 22 : 1 168-1 178.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部