期刊文献+

带漂移项分数布朗运动下的参数估计 被引量:1

下载PDF
导出
摘要 文章将Donsker型近似应用于分数布朗运动,利用极大似然方法得到了漂移项的分数布朗运动的参数估计表达式;并进一步分析了该估计量的均方收敛性和一致收敛性。数值模拟结果表明文章给出的估计量具有较高精度。
作者 孙琳
出处 《统计与决策》 CSSCI 北大核心 2010年第12期7-9,共3页 Statistics & Decision
  • 相关文献

参考文献14

  • 1Hu Y, φksendal B. Fractional White Noise Calculus and Applications to Finance[J].Infinite Dim. Anal. Quantum Probab. Related Topics,2003,(6).
  • 2Wei-guo Zhang, Wei-lin Xiao, Chun-xiong He. Pricing Equity Warrants under Fractional Brownian Motion Model and Empirical Study[J].Expert Systems with Applications,2009,36(2).
  • 3孙琳.分数布朗运动下带交易费用的期权定价[J].系统工程,2009,27(9):36-40. 被引量:9
  • 4KiseIaak J, Stehlik M. Equidistant and D-optimal Designs for Parameters of Ornstein-Uhlenbeck Process[J].Statistics and Probability Letters,2008,78.
  • 5区诗德,黄敢基,杨善朝.欧式期权价值评估的非参数估计[J].系统工程,2006,24(8):47-51. 被引量:4
  • 6Prakasa Rao, B.L.S. Identification for Linear Stochastic Systems Driven by Fractional Brownian Motion[J].Stochastic Analysis and Applications,2004,22(6).
  • 7Tudor, C.A. Viens, F.Statistical Aspects of the Fractional Stochastic Calculus[J].The Annals of Statistics,2007,35(3).
  • 8Hu, Y., Nualart, D. Parameter Estimation for Fractional Ornstein- Uhlenbeck Proeesses[J].Statistics and Probability Letter,2009,(1).
  • 9肖庆宪.Ornstein-Uhlenbeck过程的参数估计[J].应用概率统计,2005,21(1):1-8. 被引量:5
  • 10Bertin, K., Torres, S. Tudor, C.A. Maximum Likelihood Estimators and Random Walks in Long Memory Models[J].Statistics and Probability Letter,2009,(11).

二级参考文献29

  • 1卢方元.沪深股市收益率的统计特性分析[J].统计与决策,2004,20(12):13-14. 被引量:3
  • 2区诗德,邢国东,张江红.股票收益率密度的非参数估计及投资策略[J].统计与决策,2006,22(5):4-6. 被引量:4
  • 3Black F, Scholes M. The pricing of options and corporate liabilities [J].Journal of Political Economy, 1973,81:637-659.
  • 4Merton M C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976,3 : 125 - 144.
  • 5Leland H. Option pricing and replication with transactions costs[J].Journal of Finance, 1985,40:1283 -1301.
  • 6Hoggard T,Whalley A E,Wilmott P. Hedging option portfolios in the presence of transaction costs[J].Advances in Futures and Options Research, 1994,7 (1) :21-35.
  • 7Fama E. The behavior of stock market prices[J]. The Journal of Business, 1965,38 (1) : 34 - 105.
  • 8Peters E E. Fractal structure in the capital markets [J]. Financial analyst Journal, 1989,7 : 434-453.
  • 9Duncan T E, Hu Y, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion[J]. I. Theory. SIAM J. Control Optim, 2000,38 : 582 - 612.
  • 10Hu Y,et al. Fractional white noise calculus and applications to finanee[J].Infinite Dim. Anal. Quantum Probab. Related Topics, 2003,6 : 1-32.

共引文献15

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部