期刊文献+

一种基于直线特征的单目视觉位姿测量方法 被引量:18

A mono-vision method of measuring pose based on line features
原文传递
导出
摘要 提出了一种基于直线特征的单目视觉位姿测量方法SoftNewton。构造了新颖的目标直线与图像直线匹配评价函数,避免检测图像中直线的端点,最终通过软决策技术确定直线特征匹配关系,并采用高斯牛顿迭代算法基于全透视成像模型解算目标位姿。和POSIT算法相比,高斯牛顿迭代算法保持了旋转矩阵的正交性,提高位姿解算精度。仿真图像实验中,在干扰直线和噪声存在的情况下算法经过29次迭代解算得到正确的直线特征匹配矩阵,姿态误差小于0.2°,位移误差小于0.5 mm。仿真图像和实际图像实验结果均表明SoftNew-ton具有较高解算精度和较强的鲁棒性。 A new mono-vision algorithm to measure pose based on line features,called SoftNewton,is proposed.The new evaluating function for the matches between image lines and object lines is constructed,which avoids detecting the lines endpoints in image.The algorithm applies Soft-Assign technique to determining the correspondence of lines feature between image and object.Futhermore,GaussNewton iterative algorithm,that computes object pose under a full-perspective camera model,keeps the rotation matrix orthogonal and gets higher precise results.Experimentally,the simulated images with disturbing lines and noise are measured by SoftNewton.After 29 times of iteration,the accurate match matrix of lines feature is achieved.As a result,the attitude error is less than 0.2°,and the position error is less than 0.5 mm.Experiments involving synthesis images as well as real images demonstrates the robustness and accuracy of SoftNewton.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第6期894-897,共4页 Journal of Optoelectronics·Laser
基金 国家"863"计划资助项目(2003AA823050)
关键词 单目视觉 位姿 软决策 高斯牛顿法 mono-vision pose soft-assign Gauss-Newton algorithm
  • 相关文献

参考文献17

  • 1姜广文,晁志超,伏思华,于起峰.基于单摄像机的物体位置和姿态变形测量研究[J].光电子.激光,2009,20(6):775-778. 被引量:10
  • 2Lowe D G. Fitting parameterized three-dimensional models to images[J].IEEE Trans. On pattern analysis and machine intelligence, 1991,13(5) :441-450.
  • 3Sarkis M, Diepold K, Hper K. A fast and robust solution to the five-point relative pose problem using Gauss-Newton optimization on a manifold[A]. IEEE International Conference on Acoustics, Speech, and Signal Process (ICASSP)[C].2007,681- 684.
  • 4DeMenthon D F,Davis L S. Model-based object pose in 25 lines of code[A]. International Journal of Computer Vision[C].1995,123-141.
  • 5Gramegna T,Venturino L,Oicirelli G. Optimization of the POSIT algorithm for indoor autonomous navigation[J].Robotics and Autonomous Systems,2004,48(2-3) : 145-162.
  • 6Conte D, Foggia P, Sansone C, et al. Thirty years of graph matching in pattern recognitien[J].International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18 (3) : 265- 298.
  • 7Zhao C, Shi W, Deng Y. A new Hausdorff distance for image matching[J]. Pattern Recognition Letters, 2005,26 : 581-586.
  • 8Fischler M A,Bolles R C. Random Sample Consensus:A paradigm for model fitting with applications to image, Analysis and Automated Cartography[J].Communications of the ACM, 1981,24(6) :381-395.
  • 9Robert Cupec, Andreja Kitanov, Ivan Petrovic. Stereo image registration based on RANSAC with selective hypothesis generation[A].edited by Luis Basanz, Raulsuarez and Jan Rosell. Proceedings book of 40th International Symposium on Robotics[C]. 2009,265-270.
  • 10David P, DeMenthon D F, Duraiswami R, et al. SoftPOSIT: Simultaneous pose and correspondence determination[J].International Journal of Computer Vision,2004,59(3):259-284.

二级参考文献15

共引文献17

同被引文献150

引证文献18

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部