期刊文献+

利用密度聚类支持向量机的气象云图云检测 被引量:5

Meteorological imagery cloud detection using density clustering support vector machine
原文传递
导出
摘要 为了提高气象云图云检测的判识精度和计算效率,提出一种基于密度聚类支持向量机(DC-SVM)的云检测方法。分析了MTSAT气象云图的特征提取和选择方案,建立了云和下垫面的分类样本集;在SVM学习中,通过引入样本集的纯度及充足度,选择关键样本,减少了噪声和异常样本的干扰,从而降低了计算复杂度,提高了分类精度。实验表明,该算法的分类正确率较BP神经网络及传统SVM的方法分别提高了2.54%和0.21%,训练时间及测试时间也明显减少;而且,该方法还克服了传统云检测方法需要根据先验知识确定阈值的缺点,检测结果与人工解译结果基本吻合。 In order to improve the recognition accuracy and computation efficiency in cloud detection to meteorological imagery,a cloud detection method based on density clustering support vector machine(DC-SVM) is proposed.The scheme of feature extraction and selection for meteorological imagery is analyzed,and the classification sample set which discriminates cloud form underlying surface is established.In the learning stage of SVM,the critical training samples are selected to reduce the negative impact of noises and outliers by introducing the purity and sufficiency level of sample set,which can reduce the computational complexity and improve the classification accuracy.Experiments demonstrate that compared with BP neural network and traditional SVM,the proposed approach improves the classification accuracy with 2.54% and 0.21% respectively,meanwhile,the training time and testing time is reduced significantly.What is more,the proposed approach overcomes the drawback of traditional cloud detection approaches which depend on prior knowledge to determine the thresholds;the detection result is consistent with the manual interpretation roughly.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第7期1079-1082,共4页 Journal of Optoelectronics·Laser
基金 浙江省自然科学基金资助项目(Y1080778) 教育部科学技术研究重点资助项目(209155) 宁波市自然科学基金资助项目(2008A610012 2007A610012) 浙江省教育厅计划项目(200906750)
关键词 云检测 气象云图 密度聚类(DC) 支持向量机(SVM) cloud detection meteorological imagery density clustering(DC) support vector machine(SVM)
  • 相关文献

参考文献9

  • 1Arriaza J A T,Rojas F G,Lopez M P,et al. An automatic cloudmasking system using backpro neural nets for AVHRR scenes [J]. IEEE Trans. on Geoscience and Remote Sensing, 2003,41(4) :826-831.
  • 2Pao T L,Yeh J H. Typhoon locating and reconstruction from the infrared satellite cloud image[J]. Journal of multimedia, 2008, 3(2) :45-51.
  • 3Di Vittorio A V,Emery W J. An automated,dynamic threshold cloud-masking algorithm for daytime AVHRR images over land [J]. IEEE Trans. on Geoscience and Remote Sensing, 2002,48 (8) : 1682-1694.
  • 4Perez J C,Cerdena A,Gonzalez A,et al. Nighttime cloud properties retrieval using MODIS and artificial neural networks[J]. Advances in Space Research, 2009,43 : 852-858.
  • 5El-Khoribi R A. Support vector machine training of HMT models for multispectral image classification[J]. International Journal of Computer Science and Network Security, 2008,8 ( 9 ) : 224- 228.
  • 6吴一全,李晓燕,陈飒.基于Contourlet域ICA和SVM的图像融合[J].光电子.激光,2009,20(6):839-842. 被引量:6
  • 7李晓峰,沈毅.基于支持向量机的超声乳腺肿瘤图像计算机辅助诊断系统[J].光电子.激光,2008,19(1):115-119. 被引量:13
  • 8张淑雅,赵一鸣,李均利.基于SVM的图像分类算法与实现[J].计算机工程与应用,2007,43(25):40-42. 被引量:32
  • 9韩歆仪.应用两阶段分类法提升SVM法之类准确率[D].台湾:成功大学工业与资讯管理学研究所,2004.

二级参考文献24

共引文献47

同被引文献65

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部