期刊文献+

并行蚁群算法及其在区位选址中的应用 被引量:12

A Parallel Ant Colony Optimization Algorithm for Site Location
下载PDF
导出
摘要 提出基于多叉树并行蚁群算法的区位选址优化方法。算法依据蚁群算法具有的并行特性,采用GPU(graphicprocessing unit,图形处理器)并行运算技术,对地理空间进行多叉树划分,收集蚂蚁在多叉树层间旅行时逐步留下的信息素信息,进行路径选优获得理想的候选解,从而为解决平面空间资源优化配置问题提供新的思路。实验结果表明,与普通蚁群算法相比,采用基于多叉树搜索的并行蚁群算法,能够发挥蚁群算法的并行特征,在短时间内求得较为理想的解,适合计算大区域的空间资源配置问题。 An improved parallel ant colony optimization based on multiway tree is introduced to solve p-median site location problem.To take advantage of ant colony optimization and GPU parallel computing,the raster space is divided by the multiway tree and the ant paths are constructed on the nested subspace.An ideal solution can be obtained by the indirect communication of pheromone quickly.The study area is located in Guangzhou city,a densely populated region.This optimization problem considers the condition of population distribution and spatial distance.The raster layers have a resolution of 92×92 m2 with a size of 512×512 pixels.A comparison experiment is conducted between the multiway tree ACO and simple search algorithms.Experiments indicate that this multiway tree ACO method can produce similar results but use lesser computation time,have better performance in convergence precision compared with the simple search algorithms.In conclusion,the proposed algorithm is important and suitable for solving site search problems.
出处 《测绘学报》 EI CSCD 北大核心 2010年第3期322-327,共6页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(40971216)
关键词 多叉树 蚁群算法 并行运算 区位选址 GPU通用运算 multiway tree ant colony optimization parallel computation site location GPU general purpose computation
  • 相关文献

参考文献20

  • 1HAKIMI S L. Optimum Location of Switching Centers and the Absolute Centers and Medians of a Graph[J]. Operations Research, 1964, 12: 450-459.
  • 2TABARI M, KABOLI A, ARYANEZHAD M B, et al. A New Method for Location Selection: a Hybrid Analysis[J]. Applied Mathematics and Computation, 2008, 206 (2): 598-606.
  • 3NENAD M, JACK B P H, JOSE A M. The p-median Problem: a Survey of Metaheuristic Approaches [J]. European Journal of Operational Research, 2007, 179: 927-939.
  • 4BROOKES C J. A Genetic Algorithm for Designing Optimal Patch Configurations in GIS[J]. International Journal of. Geographical Information Science, 2001, 15 ( 6 ): 539-559.
  • 5黎夏,叶嘉安.遗传算法和GIS结合进行空间优化决策[J].地理学报,2004,59(5):745-753. 被引量:48
  • 6FATHALI J. A Genetic Algorithm for the p-median Problem with posineg Weights [J]. Applied Mathematics and Computation, 2006, 183: 1071-1083.
  • 7HIFI M, PAXHOS V T, ZISSIMOPOULOS V. A Neural Network for Minimum Set Problem[J]. Chaos, Solitons and Fractals, 2000, 11: 2079-2089.
  • 8DOMINGUEZ E, MUNOZA J. A Neural Model for the p-median Problem[J]. Computers & Operations Research, 2008, 35: 404-416.
  • 9AERTS C J H, HEUVELINK G B M. Using Simulated Annealing for Resource Allocation [ J ]. International Journal of Geographical Information Science, 2002, 16(6) : 571-587.
  • 10BETT1NGER P, SESSIONS J, BOSTON K. Using Ta boo Search to Schedule Timber Harvests Subiect to Spatia Wildlife Goals for Big Game[J]. Ecological Modeling 1997, 94: 111-123.

二级参考文献17

  • 1黎夏,叶嘉安.遗传算法和GIS结合进行空间优化决策[J].地理学报,2004,59(5):745-753. 被引量:48
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3Zhan H G, Lee Z P, Shi P et al. Retrieval of water optical properties for optically deep waters using genetic algorithms.IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5): 1123-1128.
  • 4Jin Y Q, Wang Y. A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness. International Journal of Remote Sensing, 2001, 22(16): 3093-3099.
  • 5Holland J. Adaptation in Natural And Artificial Systems: An Introductory Analysis with Applications to Biology,Control, And Artificial Intelligence. Cambridge, Mass: MIT Press, 1992.211.
  • 6Goldberg D E. Genetic Algorithms in Search, Optimisation and Machine Learning, Reading, MA: Addison-Wesley,1989. 412.
  • 7Openshaw S, Steadman P. On the geography of a worst case nuclear attack on population of Britain. Political Geography Quarterly, 1982, 1: 263-278.
  • 8Openshaw S, Openshaw C. Artificial Intelligence in Geography. Chichester: John Wiley & Sons, 1997. 329.
  • 9Cooper L. Location-allocation problems. Operations Research, 1963, (11): 331-343.
  • 10Cooper L. Solutions of generalized location equilibrium problems. Journal of Research Science, 1967, (7): 1-18.

共引文献130

同被引文献153

引证文献12

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部