摘要
Bubble formation in an opposite-flowing T-shaped microchannel with 40 μm in depth and 120 μm in width was real-time visualized and investigated experimentally by means of a high speed camera. N2 bubbles were generated in glycerol-water mixtures with different concentrations of surfactant sodium dodecyl sulfate (SDS). And the images were captured by the high speed camera linked to a computer. Results indicated that the bubble formation process can be distinguished into three consecutive stages, i.e., expansion, collapse and pinching off. The bubble size decreases with the increase of liquid flow rate and viscosity of liquid phase as well as the decrease of gas flow rate. The surface tension of the liquid phase has no measurable influence on the bubble size. Moreover, a new approach to predicting the size of bubbles formed in the T-shaped microchannel is proposed. And the predicted values agree well with the experimental data.
Bubble formation in an opposite-flowing T-shaped microchannel with 40 μm in depth and 120 μm in width was real-time visualized and investigated experimentally by means of a high speed camera. N2 bubbles were generated in glycerol-water mixtures with different concentrations of surfactant sodium dodecyl sulfate (SDS). And the images were captured by the high speed camera linked to a computer. Results indicated that the bubble formation process can be distinguished into three consecutive stages, i.e., expansion, collapse and pinching off. The bubble size decreases with the increase of liquid flow rate and viscosity of liquid phase as well as the decrease of gas flow rate. The surface tension of the liquid phase has no measurable influence on the bubble size. Moreover, a new approach to predicting the size of bubbles formed in the T-shaped microchannel is proposed. And the predicted values agree well with the experimental data.
基金
Supported by National Natural Science Foundation of China (No. 20876107)
Open Project of State Key Laboratory of Chemical Engineering (No. SKL-ChE-08B06)
Program of Introducing Talents of Discipline to Universities (No. B06006)