期刊文献+

Critical Cyclic Stress Ratio of Undisturbed Saturated Soft Clay in the Yangtze Estuary under Complex Stress Conditions

Critical Cyclic Stress Ratio of Undisturbed Saturated Soft Clay in the Yangtze Estuary under Complex Stress Conditions
下载PDF
导出
摘要 There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index dis-tinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus de-veloped by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consoli-dation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress,initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio wereinvestigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientationangle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate prin-cipal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic cou-pling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stressdirections during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does. There exists a critical cyclic stress ratio when sand or clay is subjected to cyclic loading. It is an index distinguishing stable state or failure state. The soil static and dynamic universal triaxial and torsional shear apparatus developed by Dalian University of Technology in China was employed to perform different types of tests on saturated soft marine clay in the Yangtze estuary. Undisturbed samples were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. The effects of initial orientation angle of major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and stress mode of cyclic shear on the critical cyclic stress ratio were investigated. It is found that the critical cyclic stress ratio decreases significantly with increasing initial orientation angle of major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident. Under the same consolidation condition, the critical cyclic stress ratio from the cyclic coupling shear test is lower than that from the cyclic torsional shear test, indicating that the stress mode of cyclic shear has an obvious effect on the critical cyclic stress ratio. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of soil more than the cyclic torsional shear does.
出处 《Transactions of Tianjin University》 EI CAS 2010年第4期295-303,共9页 天津大学学报(英文版)
基金 Supported by National Natural Science Foundation of China (No. 50639010, 50779003 and 50909014)
关键词 应力条件 临界循环 长江口 土应力 饱和 complex stress condition undisturbed saturated soft clay critical cyclic stress ratio three-directional anisotropic consolidation cyclic coupling shear cyclic torsional shear
  • 相关文献

参考文献7

二级参考文献81

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部