期刊文献+

基于小波脊和FSVM的雷达辐射源识别 被引量:9

Radar emitter recognition based on wavelet ridge and FSVM
下载PDF
导出
摘要 有效的特征提取和信号特征选择是解决复杂体制雷达辐射源信号分选难题的重要手段。利用小波脊和高阶谱分析方法提取雷达辐射源信号的瞬时频率、瞬时相位和幅度以及高阶累积量等特征向量。通过基于互信息的贪婪算法进行特征选择,得到具有低维数、可识别性的辐射源特征。为解决多分类问题中的不可分情况,引入基于模糊C均值聚类的模糊支持向量机进行雷达辐射源分类识别实验。实验表明,该方法对多种复杂辐射源信号具有较好的识别效果。 Effective feature extraction and selection are dominant measures to solve the issues of radar emitter signal sorting and classification.Wavelet ridge and high order spectrum analysis are used to extract the features such as the instantaneous frequency,instantaneous phase and amplitude.The feature selection algorithm based on mutual information is provided.Then these obtained discriminative and low dimensional features are fed to a support vector machine classifier based on FCM clustering for multi-class pattern recognition.Experiment results show that the proposed method is efficient for the detection and classification of various complex radar emitter signals.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第6期1424-1428,共5页 Chinese Journal of Scientific Instrument
关键词 雷达信号分类 小波脊 模糊C均值聚类 模糊支持向量机 radar signal classification wavelet ridge FCM clustering FSVM
  • 相关文献

参考文献15

  • 1BARTON D K.Modern radar system analysis[M].Artech House Inc,1998.
  • 2NATHANSON F E,et al.Radar design principles[M].McGraw Hill,1991.
  • 3宋国森,殷际杰,丁天昌.雷达目标探测计算机模拟系统[J].电子测量与仪器学报,1998,12(1):42-46. 被引量:1
  • 4PACE P E.Detecting and classifying low probability of intercept radar[M].MA:Artech House,2004.
  • 5宋慧波,高梅国,田黎育.一种有效的雷达微弱目标检测法[J].仪器仪表学报,2006,27(z2):1326-1327. 被引量:5
  • 6HE M H,MAO Y,JUN H.A method of extracting radar in-pulse characteristics in low SNR[C].Proc of ICSP,2006:2712-2715.
  • 7MALLAT S.A wavelet tour of signal processing[M].2nd ed.Academic Press,1996.
  • 8COVET T M,THOMAS J A.Elements of information theory[M].John Wiley & Sons,1995.
  • 9KWAK N,CHOI C H.Input feature selection by mutual information based on Parzen widows[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,34(12):1667-1671.
  • 10HUB Q,YANG J,HE J L.A multiclassification model based on FSVMs[C].Proceedings of NAFIPS 2005 Annual Meeting of the Noah American,2005:205-209.

二级参考文献19

  • 1MOLi WUSiliang MAOErke.Radar Detection for Dim Moving Target Using DP Algorithm[J].Chinese Journal of Electronics,2004,13(3):486-490. 被引量:10
  • 2乔立岩,彭喜元,彭宇.基于微粒群算法和支持向量机的特征子集选择方法[J].电子学报,2006,34(3):496-498. 被引量:25
  • 3YU S H , WITTEN T R. Automatic mine detection based on ground penetrating radar[ C]. in Proc. of SPIE Con- ference on Detect. and Rem. Techn. for Mines and Minelike Targets, 1999,37(10) :960-972.
  • 4GYNATILAKA A H, BAERTLEIN B A. A subspace decomposition technique to improve GPR imaging of antipersonnel mines [ C ]. In Proc. of SPIE, AeroSense 2000: Detect. and Rem. Techn. for Mines and Minelike Targets, 2000, (4038) : 1008-1018.
  • 5YEN G G, LINK C. Wavelet packet feature extraction for vibration monitoring[ J ]. IEEE Transactions on Industrial Electronics, 2000,47 ( 3 ) :650-667.
  • 6DASH M, LIU H. Feature selection for classification [ J ]. IEEE Transactions on Intelligent Data Analysis, 1997,1(3) :131-156.
  • 7BHANU B, LIN Y. Genetic algorithm based feature selection for target detection in sar images [ J ]. Image Vision Comput, 2003,2 ( 17 ) :591-608.
  • 8SAHL H I, NYSSEN E, KEMPEN L V, et al. Feature extraction and classification methods for ultra-sonic and radar mine detection[J]. IEEE CESA ;95 conference, April 1-4, Tunis, Tunesia, 1998,4:82-87.
  • 9COLLOBERT R, BENGIO S. SVMTorch: Support vector machines for llarge-scaleregression problems[ J ]. J. Machine Learn, 2001 ( 1 ) : 143-160.
  • 10JOACHIMS T. Making large-scale SVM learning practical, In Schokopf, B. et al (eds) [ M ]. Advances in Kernel Methods-Support Vector Learning, MIT Press, 1999.

共引文献18

同被引文献126

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部