期刊文献+

苯图上的珊瑚

The coral corresponding to a Kekuléan benzenoid
原文传递
导出
摘要 给出算法搜索任意凯库勒型苯图的根,并基于此分别给出新的充要条件判定:苯图的正规,凯库勒结构为根、芽或其它.进一步,对于任意两个凯库勒结构,给出充要条件判定其一是否可经由六角旋转转化为另一个. An algorithm for searching the root of any Kekuléan benzenoid system is given.Based on it,some new sufficient and necessary conditions for a benzenoid system to be normal,for a Kekulé structure to be the root,bud or others of a Kekuléan benzenoid system are deduced respectively.Moreover,for any two Kekulé structures,we give a sufficient and necessary condition to determine whether one can transform into the other one.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期325-329,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省教育厅科研资助项目(JB07032) 福州大学科技发展基金资助项目(2007-XY-09)
关键词 苯图 完美匹配 六角旋转 珊瑚 算法 benzenoid perfect matching sextet rotation coral algorithm
  • 相关文献

参考文献10

  • 1Gutman I, Cyvin S J. Introduction to the theory of benzenoid hydrocarbons [ M ]. Berlin: Springer - Verlag, 1989.
  • 2Cyvin S J, Brunvoll J, Cyvin B N. Theory of eoronoid hydrocarbons[ M]. Berlin: Springer- Verlag, 1991.
  • 3Ohkami N, Motoyama A, Yamaguchi T, et al. Graph- theoretical analysis of the clar' s aromatic sextet: mathematical properties of the set of the Kekule patterns and the sextet polynomial for polycyclic aromatic hydrocarbons [J ]. Tetrahedron, 1981,37: 1 113 -1 122.
  • 4Zhang H P, Zhang F J. The rotation graphs of perfect matchings of plane bipartite graphs[J]. Discrete Appl Math, 1997, 73: 5 - 12.
  • 5Zhang H P, Lain P C B, Shiu W C. Cell rotation graphs of strongly connected orientations of plane graphs with an application [J]. Discrete Appl Math, 2003, 130:469 -485.
  • 6Zhang H P, Zha R J, Yao H Y. Z - transformation graphs of maximum matchings of plane bpartite graphs [ J ]. Discrete Appl Math, 2004, 134:339-350.
  • 7Gutman I, Teodorovic A V, Kolakovie N. Algebraic studies of Kekule stuctures, a semilattice based on the sextet rotation concept[J]. Z Naturforsch, 1989, 44a : 1 097-1 101.
  • 8Gratzer G. General lattice theory[ M ]. Berlin: Akademie- Verlag, 1978.
  • 9Hansen P, Zheng M. Normal components of benzenoid systems[ J]. Theor Chim Acta, 1993, 85:335 -344.
  • 10Zhang F J, Chen R S. When each hexagon of a hexagonal system couvers it[J]. Discrete Appl Math, 1991,30:63 -75.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部