期刊文献+

考虑随机阴影影响的光伏阵列失配运行特性 被引量:28

Operation Mismatches of Photovoltaic Array Considering Random Shadows
下载PDF
导出
摘要 目前为了减少功率失配损失,一般太阳能模组串联时都配置旁路二极管以提供一个能量散逸的途径;而在并联运行前,还将配置阻断二极管以防止功率逆向传送。本文基于上述新配置条件重点考察了随机阴影导致的光伏阵列运行失配特性,并比较了不同串并联模式下的阵列抗失配能力。研究结果表明:由于多辐射强度导致功率曲线多峰走向的趋势,常规单调MPPT算法可能因只检测到伪极大值点而失效;其次,局部辐射强度导致的"门槛效应",即局部阴影的变化并不一定对全局功率输出有影响;最后,为了相对提高输出功率,提出全阵列设计时应优先考虑并联的建议。 Photovoltaic cells would operation as load when local solar irradiation declines in series connection, which would result in the damages easily. Nowadays modules are often configured with bypass diodes to provide energy releasing route. Furthermore, blocking diode is series connected before parallel connection in order to prevent inverse power injection. Based on such configurations, this paper is mainly devoted to investigate the operation mismatches of the photovoltaic array caused by random shadows, and compared different abilities under diverse series/parallel patterns. Researches indicate that: firstly, traditional monotone algorithms of MPPT could be invalid for detecting false maximum only. Secondly, the "doorsill effect" of local irradiation intensities, namely that global power output might not be influenced by changes of local shadows. Finally, suggestions are put forward that parallel connection should be ranked prior consideration with whole array design, to boost power output relatively.
出处 《电工技术学报》 EI CSCD 北大核心 2010年第6期104-109,共6页 Transactions of China Electrotechnical Society
基金 国家自然科学基金(50907010 50707004) 日本文部省社会提携研究推进项目资助
关键词 光伏阵列 旁路二极管 阻断二极管 辐射强度 最大功率点 Photovoltaic array bypass diode blocking diode irradiation density maximal power point (MPP)
  • 相关文献

参考文献17

  • 1Kawamura H, Naka K, Yonekura N, et al. Simulation of I-V characteristics of a PV module with shaded PV cells[J]. Solar Energy Materials and Solar Cells, 2003, 75(3-4): 613-621.
  • 2Pena R, Algora C. Evaluation of mismatch and non-uniform illumination losses in monolithically series-connected GaAs photovoltaic converters[J]. Progress in Photovoltaics, 2003, 11 (2): 139-150.
  • 3Tobias I, El Moussaoui A, Luque A. Colored solar cells with minimal current mismatch[J]. IEEE Transactions on Electron Devices, 1999, 46(9): 1858-1865.
  • 4Drif M, Perez P J, Aguilera J, et al. A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems[J]. Renewable Energy, 2008, 33: 2048-2056.
  • 5Gautam N K, Kaushika N D. Network analysis of fault-tolerant solar photovoltaic arrays[J]. Solar Energy Materials and Solar Cells, 2001, 69(1): 25-42.
  • 6Kaushika N D, Rai A K. An investigation of mismatch losses in solar photovoltaic cell networks[J]. Energy, 2007, 32(5): 755-759.
  • 7Petrone G, Spagnuojo G, Vitelli M. Analytical model of mismatched photovoltaic fields by means of Lambert W-function[J]. Solar Energy Materials and Solar Cells, 2007, 91 08): 1652-1657.
  • 8Mishima T, Ohnishi T. A power compensation and control system for a partially shaded PV array[J]. Electrical Engineering in Japan, 2004,146 (3): 74-82.
  • 9Ahmed N A, Miyatake M. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions[J]. Electric Power Systems Research, 2008,78 (5): 777-784.
  • 10Alonso-Garcia M C, Ruiz J M, Chenlo F. Experimental study of mismatch and shading effects in the I-V characteristic of a photovoltaic module[J].Solar Energy Materials and Solar Cells, 2006,90 (3): 329-340.

同被引文献271

引证文献28

二级引证文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部