期刊文献+

辛几何上具有仲裁的认证码的一类新构作 被引量:3

New construction of authentication codes with arbitration from symplectic geometry
下载PDF
导出
摘要 具有仲裁的认证码既能防止敌手的欺骗,又能防止收方和发方的互相欺骗,它能够解决通讯系统中收方与发方互不信任的问题。利用辛几何采用一种新的方法构作了一类具有仲裁的认证码,并计算了它们的参数,并在假定源状态和编码规则都是等概率分布选取时,计算了各种攻击成功的概率。 The authentication codes with arbitration protect against deceptions from the transmitters and receivers as well as those from the opponents. It can solve the problem that transmitters and receivers dispute in communication. A new construction of authentication codes with arbitration from symplectic geometry is given by new method in this paper. The parameters of the codes are computed. Assuming that the probability distribution of source state and encoding rules are uniform, the probabilities of successful attacks are also computed.
出处 《河北科技大学学报》 CAS 北大核心 2010年第4期294-299,共6页 Journal of Hebei University of Science and Technology
基金 河北省自然科学基金资助项目(A2009000253) 河北省教育厅自然科学基金资助项目(2007127)
关键词 认证码 仲裁者 辛几何 authentication code arbiter symplectic geometry
  • 相关文献

参考文献5

二级参考文献15

共引文献55

同被引文献16

  • 1郭军,霍元极,赵东明.有限向量空间中子空间的计数公式及其应用[J].河北师范大学学报(自然科学版),2004,28(6):561-564. 被引量:4
  • 2郭军.利用有限仿射几何构作带仲裁的认证码[J].高师理科学刊,2007,27(1):1-4. 被引量:1
  • 3WAN Zhe-xian. Geometry of Classical Groups over Finite Fields[M]. 2nd Ed. Beijing/New York: Science Press,2002.6]-106.
  • 4SIMMONS G J . Authentication theory/coding theory[A]. Advances in Cryptology-Crypto'84, Lecture Notes in Computer Science 196 [C]. Berlin: Springer-Verlag,1985. 411-431.
  • 5SIMMONS G J. Message authentication with arbitration of transmitter/receiver disputes[A]. Chaum DPrice W L. Proc Eurocrypt'87[C]. Berlin: Springer Verlag,1988, 151-165.
  • 6JOHANSSON T. Lower bounds on the probability of deception in authentication with arbitration[J]. IEEE Transactions on Information Theory, 1994,40(5) :1 573-1 585.
  • 7李瑞虎 李尊贤.利用射影几何构作一类完备的A^2-码.通信保密,1997,37(3):72-76.
  • 8FROBENIUS G. Uber Matrizen aus nicht Negativen Elementen[M]. Berlin:S B Press, 1912.
  • 9MINC H. Nonnegative Matrices[M]. Wew York: Wiley, 1988.
  • 10LIU Shu-lin. Bounds for the greatest characteristic root of a nonnegative matrix[J]. Lin Alg Appl, 1996,239:151-160.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部