期刊文献+

一种基于多尺度线调频基的稀疏信号分解方法 被引量:17

Sparse signal decomposition method based on multi-scale chirplet
下载PDF
导出
摘要 在线调频小波路径追踪算法和稀疏信号分解的基础上,提出了一种基于多尺度线调频基的稀疏信号分解方法。该方法采用多尺度的线调频基函数对信号进行投影分解,通过从不同的时间支撑区内投影系数最大的的基函数集合中寻找出使分解信号能量最大的基函数组合,逐次获得分析信号中能量最大的信号分量。该方法可以有效地分解出频率变化呈线性或曲线型的多分量信号,且不存在二次型时频分布的干扰成分,具有良好的时频聚集性和较高的频率拟合精度,非常适用于机械振动非平稳信号的分解。将该方法与EM D方法进行了比较,验证了方法的有效性。 A sparse signal decomposition method based on multi-scale chirplet is proposed in which the signals are projected onto the multi-scale base functions.By studying the base function library with the largest projection coefficient from different regions of time,signal component with the largest energy can be obtained step by step.The method can be effectively used to decompose the signals with multi-component whose frequencies change linearly or curvedly.There is no interference of the composition.Favorable aggregation of time-frequency and ideal fitting performance make it very suitable to decompose non-stationary signals of the machine.Compared to the EMD method,its effectiveness can be proved.
出处 《振动工程学报》 EI CSCD 北大核心 2010年第3期333-338,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50875078) 国家高技术研究发展计划资助项目(863计划 2009AA04Z414) 教育部长江学者与创新团队发展计划(5311050050037) 湖南大学汽车车身先进设计制造国家重点实验室自主课题(60870002)
关键词 信号处理 稀疏分解 基函数 线调频小波 非平稳信号 signal processing sparse decomposition base function chirplet non-stationary signal
  • 相关文献

参考文献12

  • 1Bizarro J P S,Figueiredo A C A.Time-frequency analysis of fusion plasma signals beyond the shorttime Fourier transform paradigm:An overview[J].Fusion Engineering and Design,2008,83(2-3):350-353.
  • 2Benko U,Juricic D.Frequency analysis of noisy short-time stationary signals using filter-diagonaliza-tion[J].Signal Processing,2008,88(7):1733-1 746.
  • 3Qin S R,Zhong Y M.A new envelope algorithm of Hilbert-Huang transform[J].Mechanical Systems and Signal Processing,2006,20(8):1 941-1 952.
  • 4Huang N E,Wu M-L C,Long S R.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J].Proc.R.Soc.Lond.A,2003,459:2 317-2 345.
  • 5DENG Yongjun, WANG Wei, QIAN Chengchun, WANG Zhong & DAI DejunNetwork Center, Ocean University of Qingdao. Qingdao 266003, China,Physical Oceanography Laboratory, Ocean Universily of Qingdao, Qingdao 266003, China.Boundary-processing-technique in EMD method and Hilbert transform[J].Chinese Science Bulletin,2001,46(11):954-961. 被引量:93
  • 6Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].Signal Processing,1993,41(12):3 397-3 415.
  • 7Candas E J,Charhon P R,Helgason H.Detecting highly oscillatory signals by chirplet path pursuit[J].Applied and Computational Harmonic Analysis,2008,24(1):14-40.
  • 8Spanos P D,Giaralis A,Politis N P.Time-frequency representation of earthquake accelerograms and inelastic struetural response records using the adaptive chirplet decomposition and empirical mode decomposition[J].Soil Dynamics and Earthquake Engineering.2007,27(7):675-689.
  • 9Dugnol B,Fernandez C,Galiano G,et al.On a chirplet transform-based method applied to separating and counting wolf howls[J].Signal Processing,2008,88(7):1 817-1 826.
  • 10Jie Cui,Wong W.Investigation of short-term changes in visual evoked potentials with windowed adaptive chirplet transform[J].Biomedical Engineering,2008,55(4):1 449-1 454.

二级参考文献1

共引文献92

同被引文献115

引证文献17

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部