摘要
本文讨论有限自动机显表出定义函数f的线性本原圈积分解问题.在该圈积分解之下,函数f被表成线性外函数因子fL与线性本原内函数因子fN的圈积,这里函数fL定义了一个线性弱可逆有限自动机MfL,而函数fN定义了一个非线性有限自动机MfN且其不能再分解成一非平凡的线性外函数与一非线性内函数的圈积.本文证明了一函数f的任两线性本原内因子互为对方的线性本原内因子,从而证明了函数f的线性本原圈积分解的唯一性.本文所给出的函数f的线性本原圈积分解比此前已有的f的相对(t0,T)圈积分解能进一步降低求f定义的有限自动机Mf的弱逆M*f的复杂性,其可应用于有限自动机公钥密码体制的密码分析中.
This paper discusses the linear primitive factorization to a loop product of the automaton defining function f . Under this factorization function f is factorized as the loop product of a linear out function divisor f L and a linear primitive inner function divisor f N , where f L defines a linear weakly invertible finite automaton M f L and f N defines a nonlinear finite automaton M f N and f N can not be factorized as a loop product of a nontrivial linear out function and a nonlinear inner function. The paper proves that any two linear primitive inner function divisors of function f are a linear primitive inner function divisor of each other. So the factorization to a loop product given by the paper has uniqueness. Also this paper proves the linear primitive factorization to loop product of function f can more reduce the complexity for finding a weak inverse of M f which is defined by function f than the factorization to a loop product relative to (t 0, T) (DAI et al , Communications Security, No.2,1996, 45 51). This can be effectively applied to the cryptanalysis on the finite automaton key cryptosystems.
出处
《计算机学报》
EI
CSCD
北大核心
1999年第1期11-15,共5页
Chinese Journal of Computers
基金
国家自然科学基金
西安电子科技大学综合业务网理论与关键技术国家重点实验室资助
关键词
函数
圈积分解
线性本原因子
有限自动机
Loop product of functions, factorization to loop product, linear primitive function divisor, automaton.