摘要
文中使用Daubechies正交小波变换对人脸图像作预处理,得到它在不同频带上的4个子图像,对它们分别提取奇异值特征,然后用最近邻方法进行分类,这样使得4组分类结果之间相关性减少,差异性增大.同时设计了一种适用于多分类结果融合的群体决策算法,并且对分类结果有选择地进行融合.实验表明,对于奇异值特征而言,作小波变换预处理得到的4个子图像的分类结果之间具有一定互补性,用群体决策算法作融合,可以提高其分类性能.实验也说明,群体决策方法计算复杂度低,优于常用的计分法的融合效果.
Daubechies orthogonal wavelet transform is used to preprocess the face image,resulting in its four subimages belonging to different frequency bands.The singular value feature vectors are then extracted from the four subimages respectively,and the nearest neighbour classifier is used to recognize them.This makes correlation reduce and makes difference raise between the four groups of sort results.A group decision making algorithm is designed to combine the multiple sort results.Moreover,all of or part of them can be combined according to group consensus index.Experiments show that so far as singular value feature is concerned,there is a certain complementarity between the sort results of the four subimages.The sort performance can be improved using the group decision making algorithm,which has lower computational complexity and better combination results than the commonly used mark counting approach.
出处
《计算机研究与发展》
EI
CSCD
北大核心
1999年第1期72-76,共5页
Journal of Computer Research and Development
基金
国家自然科学基金
博士点基金
关键词
人脸识别
小波变换
奇异值特征
群体决策方法
face recognition,wavelet transform,sigular value feature,group decision making