摘要
基于线性溶剂强度模型,应用特征线分析的方法求解梯度洗脱模式下的理想液相色谱模型。在考虑到梯度延迟时间会对溶质的保留时间造成影响的情况下,得到适合于梯度液相色谱中任意等度、线性和阶梯梯度组合条件下的保留时间推导公式。应用这些公式计算任意的梯度条件下的保留时间,并将得到的结果与数值计算的结果进行比较,二者完全一致,从而验证了推导得到的保留时间公式的正确性。由于这些公式具有形式简单、适用范围广等优点,因此可方便地应用于实际应用中,具有较高的实用价值。
The ideal model of liquid chromatography in gradient elution was solved by using the characteristic approach on the assumption of a linear solvent strength model. By considering the influence of the dwelling time of the chromatographic system on retention time, the retention time formulae suited for any combination of isocratic, linear and stepwise gradients were obtained. It was found that the values of the retention time obtained from these formulae were in well accordance with those computed by using the finite-difference method, which confirms the validity of the formulae. Due to the simplicity and broad scope of applications, these formulae can be easily applied in practice.
出处
《色谱》
CAS
CSCD
北大核心
2010年第6期541-546,共6页
Chinese Journal of Chromatography
基金
江苏省自然科学基金项目(No.BK2009301)
常州市社会发展科技计划项目(No.CS20090001)
关键词
液相色谱
保留时间
计算公式
等度洗脱
线性梯度洗脱
阶梯梯度洗脱
liquid chromatography
retention time
formulae
isocratic elution
linear gradient elution
stepwise gradient elution