期刊文献+

梯度液相色谱中任意等度、线性和阶梯梯度组合下的保留时间公式 被引量:2

General retention time formulae for gradient liquid chromatography with any combination of isocratic,linear and stepwise gradients
下载PDF
导出
摘要 基于线性溶剂强度模型,应用特征线分析的方法求解梯度洗脱模式下的理想液相色谱模型。在考虑到梯度延迟时间会对溶质的保留时间造成影响的情况下,得到适合于梯度液相色谱中任意等度、线性和阶梯梯度组合条件下的保留时间推导公式。应用这些公式计算任意的梯度条件下的保留时间,并将得到的结果与数值计算的结果进行比较,二者完全一致,从而验证了推导得到的保留时间公式的正确性。由于这些公式具有形式简单、适用范围广等优点,因此可方便地应用于实际应用中,具有较高的实用价值。 The ideal model of liquid chromatography in gradient elution was solved by using the characteristic approach on the assumption of a linear solvent strength model. By considering the influence of the dwelling time of the chromatographic system on retention time, the retention time formulae suited for any combination of isocratic, linear and stepwise gradients were obtained. It was found that the values of the retention time obtained from these formulae were in well accordance with those computed by using the finite-difference method, which confirms the validity of the formulae. Due to the simplicity and broad scope of applications, these formulae can be easily applied in practice.
出处 《色谱》 CAS CSCD 北大核心 2010年第6期541-546,共6页 Chinese Journal of Chromatography
基金 江苏省自然科学基金项目(No.BK2009301) 常州市社会发展科技计划项目(No.CS20090001)
关键词 液相色谱 保留时间 计算公式 等度洗脱 线性梯度洗脱 阶梯梯度洗脱 liquid chromatography retention time formulae isocratic elution linear gradient elution stepwise gradient elution
  • 相关文献

参考文献18

  • 1Chen X G,Kong L,Su X Y,et al.J Chromatogr A,2005,1089:87.
  • 2Schellinger A P,Stoll D R,Carr P W.J Chromatogr A,2005,1064:143.
  • 3Neue U D,Marchand D H,Snyder L R.J Chromatogr A,2006,1111:32.
  • 4Fitzpatrick F,Staal B,Schoenmakers P.J Chromatogr A,2005,1065:219.
  • 5Nikitas P,Pappa-Louisi A,Papachristos K.J Chromatogr A,2004,1033:283.
  • 6Guiochon G.J Chromatogr A,2002,965:129.
  • 7Samuelsson J,Sajonz P,Fornstedt T.J Chromatogr A,2008,1189:19.
  • 8Golshan-Shirazi S,Guiochon G.J Phys Chem,1989,93(10):4143.
  • 9El Fallah M Z,Guiochon G.Anal Chem,1991,63(9):859.
  • 10El Fallah M Z,Guiochon G.Anal Chem,1991,63(20):2244.

二级参考文献100

  • 1梁恒.非线性色谱的非平衡热力学理论Ⅰ.非线性-非理想-平衡色谱过程的局域Lagrangian方法[J].色谱,2007,25(5):664-680. 被引量:3
  • 2Kreuzer H J. Non-Equilibrium Thermodynamics and Its Statistical Foundations. Oxford: Clarendon Press, 1981: 1.
  • 3Liang H, Lin B C. J Chromatogr A, 1998, 828 : 3.
  • 4Liang H, Wang Z G, Lin B C, Xu C G, Fu R N. J Chromatogr A, 1997, 763:237.
  • 5Liang H, Lin B C. J Chromatogr A, 1999, 841:133.
  • 6Liang H, Liu Y. J Chromatogr A, 2004,1040; 19.
  • 7Liang H, Liu X L. Science in China Series B: Chemistry, 2004, 6:443.
  • 8Heath M T, Heath M. Scientific Computing : An Introductory Survey. 2nd ed. New York: McGraw-Hill Companies, 2002 : 1.
  • 9Watkins D S. Fundamentals of Matrix Computations. New York: John Wiley and Sons, 2002:1.
  • 10Wagner D H. J Differential EquatiOns, 1987, 68:118.

共引文献3

同被引文献30

  • 1张玉荣,刘琦,孙志清.高效液相色谱法相对保留时间和峰高比在毒物筛选中的应用[J].法医学杂志,1995,11(2):57-59. 被引量:6
  • 2Gritti F, Guiochon G. J Chromatogr A, 2009, 1216 (33) : 6124.
  • 3Chen X, Kong L, Su X, et al. J Chromatogr A, 2005, 1089 (1/2) : 87.
  • 4Wiczling P, Kaliszan R. Anal Chem, 2010, 82(9) : 3692.
  • 5Schellinger A P, Stoll D R, Carr P W. J Chromatogr A, 2005, 1064(2): 143.
  • 6Snyder L R, Dolan J W, Gant J R. J Chromatogr, 1979, 165 (1):3.
  • 7Fitzpatrick F, Edam R, Schoenmakers P. J Chromatogr A, 2003, 988(1) : 53.
  • 8Gallant S R, Vunnum S, Cramer S M. AIChE J, 1996, 42 (9) : 2511.
  • 9Natarajan V, Ghose S, Cramer S M. Biotechnol Bioeng, 2002, 78(4) : 365.
  • 10Hao W, Zhang X, Hou K. Anal Chem, 2006, 78(22) : 7828.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部