摘要
针对车用发动机振动状态大样本数据分析困难问题,提出用主成分分析(PCA)方法对大样本数据进行特征信息提取,将高维相关特征参数转化为低维互不相关的特征参数,从而建立了某型车用发动机振动状态综合评价函数。应用该方法对某型车用发动机振动状态进行分析,结果表明,该方法可以在信息量损失较小的前提下,定量评价车用发动机振动状态。
Large sample data analysis for vehicle's engine vibration is a difficult issue.An approach of extracting the characteristic information from the large sample data is proposed using the principal component analysis(PCA) method.In this method,the mutually related high-dimensional characteristic parameters are reduced to several independent low-dimensional characteristic parameters,so as to constitute a model for comprehensive evaluation of a vehicle's engine vibration.Using this method,the vibration state of the vehicle's engine is analyzed.The result shows that using this method,the vibration state of vehicle's engine can be quantitatively evaluated with a smaller information loss.
出处
《噪声与振动控制》
CSCD
北大核心
2010年第3期94-96,175,共4页
Noise and Vibration Control
基金
国家自然科学基金资助项目:"变工况下旋转设备轻微故障特征的增加与诊断方法研究"(基金号:50905121)
关键词
振动与波
车用发动机
主成分分析
状态监测
vibration and wave
vehicle's engine
principal component analysis(PCA)
condition monitoring