期刊文献+

有限维逼近无限维总极值的水平值估计方法

Finite Dimensional Approximation to Global Minima:A Level-Value Estimation Method
下载PDF
导出
摘要 变分计算、最优控制、微分对策等常常要求考虑无限维空间中的总极值问题,但实际计算中只能得出有限维空间中的解.本文用有限维逼近无限维的方法来讨论函数空间中的总体最优化问题.用水平值估计和变侧度方法来求得有限维逼近总体最优化问题.对于有约束问题,用不连续精确罚函数法将其转化为无约束问题求解. It is required to consider global minimization problems in infinite dimensional spaces in calculus of variations,optimal control and differential games.However, in practical computation one can only find solutions in finite dimensional spaces.New optimality of the integral global minimization are applied to characterize global minimun in functional space as a sequence of approximating solutions in finite-dimensional spaces. A variable measure algorithm and a level-value estimation method are used to find the solutions in finite-dimensional spaces.For a constrained problem,a discontinuous penalty method is proposed to convert it into a unconstrained problem.
出处 《应用数学与计算数学学报》 2010年第1期1-8,共8页 Communication on Applied Mathematics and Computation
基金 上海市重点学科(S30104)建设项目 上海自然科学基金(09ZR1411100)资助
关键词 有限维逼近 变侧度方法 水平值估计 Finite dimensional approximation variable measure level-value estimation
  • 相关文献

参考文献7

  • 1郑权 蒋百川.一个求总极值的方法[J].应用数学学报,1978,1(2):161-173.
  • 2彭拯,邬冬华,田蔚文.约束全局最优化的水平值估计算法[J].计算数学,2007,29(3):293-304. 被引量:10
  • 3贺真真,崔洪泉,郑权.有限维逼近无限维总极值的积分型方法(英文)[J].运筹学学报,2005,9(1):21-31. 被引量:5
  • 4Zwart P.B.Nonlinear programming:counterexamples to global optimization algorithms by Ritter and Tui[J].Operation Research,1973,2:1260-1266.
  • 5Chew S.H.,Zheng Q.Integral Global Optimization,Lecture Notes in Economics and Mathematical Systems[M].Springer-Verlag,New york,1988.
  • 6Vakhania N.N.Probability Distribution on Linear Spaces[M].North Holland,New York,1981.
  • 7Zheng Q.,Zhuang D.Finite dimensional approximation to solutions of minimization problems in functional spaces[J].Optimization,1992,26:33-50.

二级参考文献12

  • 1郑权 蒋百川.一个求总极值的方法[J].应用数学学报,1978,1(2):161-173.
  • 2S.H. Chew, Q. Zheng. Integral Global Optimization. Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, New York, 1988, 298.
  • 3H. Cui, C. Wang, Q. Zheng. On Optimality Conditions and Algorithms for Integral Global Minimization. preprint.
  • 4N.N. Vakhania. Probability Distributions on Linear Spaces. North Holland, New York, 1981.
  • 5B. Wu, H. Cui, Q. Zheng. Integral Minimization of Constrained Problems with Discontinuous Penalty Functions. preprint.
  • 6Q. Zheng, L. Zhang. Global minimization of constrained problems with discontinuous penalty functions. Computers and Mathematics with Applications, 1998, 37: 151,,-162.
  • 7Q. Zheng, D. Zhuang. Finite dimensional approximation to solutions of minimization problems in functional spaces. Optimization, 1992, 26: 33-50.
  • 8Q. Zheng, D. Zhuang. Integral global optimization of constrained problem in functional space with discontinuous penalty functions, in Recent Advances in Global Optimization, C.A. Floudas,P.M. Pardalos eds., Princeton University Press, 1992, 298-320.
  • 9Chew Soo Hong,Zheng Quan.Integral Global Optimization (Theory,Implementation and Applications)[M].Springer-Verlag,1988.
  • 10Zwart P B.Nonlinear programming:counterexamples to global optimization algorithms by Fitter and Tui[J].Operations Research,1973 (2):1260-1266.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部