期刊文献+

内积空间上最小二乘形式的矩阵Pade-型逼近 被引量:1

Least-squares Matrix Padé-Type Approximation in the Inner Product Space
下载PDF
导出
摘要 当矩阵幂级数的展开式的系数产生微小摄动时,矩阵Padé-型逼近解往往变化很大.本文在矩阵Padé-型逼近研究的基础上,受Brezinski的启发,借助于误差公式和最小二乘法构造了一种稳定性和精确度均有所提高的矩阵Padé-型逼近的新方法,即最小二乘形式的矩阵Padé-型逼近(LSMPTA),并给出了LSMPTA完整的分子和分母行列式表达式.最后,通过数值实例说明了这一方法的有效性. Matrix Padé-type approximation can be quite sensitive to perturbation on the coefficients of the power series.In this paper,a new matrix Padé-type approximation (LSMPTA) is constructed by means of error formula and least-squares method,which is more stable and accurate.The idea of this construction is partly derived from Claude Brezinski.The numerator and denominator of LSMPTA determinant expressions are given.In the end,an example given shows that the method is effective.
机构地区 上海大学数学系
出处 《应用数学与计算数学学报》 2010年第1期113-119,共7页 Communication on Applied Mathematics and Computation
基金 上海大学研究生创新基金项目资助
关键词 矩阵值 线性泛函 Padé-型逼近 最小二乘法 matrix-valued liner functional Padé-type approximation least-squares
  • 相关文献

参考文献3

二级参考文献12

  • 1顾传青,陈之兵.矩阵有理插值及其误差公式[J].计算数学,1995,17(1):73-77. 被引量:33
  • 2顾传青.关于矩阵切触有理插值[J].高等学校计算数学学报,1996,18(2):135-141. 被引量:11
  • 3顾传青.基于广义逆的矩阵Pad■逼近[J].计算数学,1997,19(1):19-29. 被引量:11
  • 4Chisholm J S R. Solution of integral equations using Pade approximants[ J]. J Math Phys, 1963,4(12) : 1506-1510.
  • 5Graves-Morris P R. Solution of integral equations using generalised inverese, function-valued Pade approximants[J]. J Comput Appl Math, 1990,32(1) :117-124.
  • 6Brezinski C. Pade-Type Approximation and General Orthogonal Polymomials[ M ]. Basel: Birkhauser, 1980.
  • 7Draux A. the Pade approximants in a non-commutative algebra and their applications[ A]. In: Werner H,Bunger H J , Eds. Pade Approximation and Its Applications [C]. LNM Vol 1071, Berlin: SpringeVerlag, 1984, 117-131.
  • 8Salam A.Vector Pade-type approximants and vector Pade approximants[J].J Approx Theory,1999,97(1):92-112.
  • 9GU Chuan-qing.Matrix Pade-type approximant and directional matrix in the inner product space[J].J Comput Appl Math,2004,164-165(1):365-385.
  • 10顾传青.基于广义逆的矩阵PADE逼近的Pfaffian计算公式及其应用[J].数值计算与计算机应用,1998,19(4):283-289. 被引量:1

共引文献14

同被引文献9

  • 1Mason J C. Some Application and Drawbacks of Pade Approximation [M]. New York: Academic Press, 1981: 207-223.
  • 2Draux A. Rectangular matrix Pade approximants and square matrix orthogonal polynomials [J]. Numerical Algorithms, 1997, 14(4): 321-341.
  • 3Gu C Q. Matrix Pad~-type approximant and directional matrix Pade-type approximant in the inner product space [J]. J Comput Appl Math, 2004, 164/165: 365-385.
  • 4魏木生.广义最小二乘问题的理论和计算[M].北京:科学出版社,2007.
  • 5Hayami K, Yin J F, Ito T. GMRES methods for least squares problems [J]. SIAM Journal on Matrix Analysis and Applications, 2010, 31(5): 2400-2430.
  • 6Benzi M, Tuma M. A robust incomplete factorization preconditioner for positive definite ma- trices [J]. Numer Linear Algebra Appl, 2003, 10(5/6): 385-400.
  • 7Paige C C, Saunders M A. LSQR: An algorithm for sparse linear equations and sparse least squares [J]. ACM Trans Math Softw, 1982, 8(1): 43-71.
  • 8顾传青.关于矩阵指数的PADE逼近新算法[J].自动化学报,1999,25(1):94-99. 被引量:8
  • 9顾传青.一种新型的矩阵Padé逼近方法[J].自然杂志,2002,24(1):41-44. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部