期刊文献+

32种果树microRNA的生物信息学预测与分析 被引量:15

Computational Identification and Analysis of the Putative microRNAs in 32 Fruit Crops
原文传递
导出
摘要 通过生物信息学预测miRNA的方法,采用基于生物信息学的基因搜索和同源搜索的方法成功地从NCBI数据库中登录的32种果树的EST中寻找miRNAs。从32种果树的774400条ESTs中找到了110条miRNA前体序列,编码116条成熟体序列。利用miRbase数据库进一步分析,结果表明116个miRNAs属于45个miRNA家族,其中有7个保守的miRNA家族中的miRNA个数在5以上,20个miRNA家族的miRNA个数在2~4,有18个miRNA家族的miRNA数量为1个。在柑橘、苹果、香蕉、猕猴桃和桃等果树中分别发现28、16、13、11和10个miRNAs。果树中miRNA的序列比较发现,相同家族的miRNA的序列存在一定水平的差异,其中碱基的变化包括相似频率的颠换与转换。 Here we present a study of bioinformatics identification of microRNA precursors in fruit crops by blasting ESTs of 32 fruit crops in NCBI using bioinformatics-based gene search and homology search method to look for miRNAs in fruit crops.A total of 110 miRNA precursors,encoding 116 unique miRNA sequences,were identified in these fruit crops.Further analysis through the miRbase database showed the 116 miRNAs belonged to 45 miRNA families,of which 7 were predicted with miRNA number more than 5,20 between 2–4,and the other 18 with only 1 miRNA.miRNAs were identified in Citrus,apple,bananas,kiwifruit and peach,and the numbers of miRNAs found in them were 28,16,13,11,and 10,respectively.The results of the alignment of 6 miRNA families showed the nucleotide sequences of the miRNAs in same family were variable,and the variation between the nucleotides of same locus could be of transversion and transition.
出处 《园艺学报》 CAS CSCD 北大核心 2010年第6期869-879,共11页 Acta Horticulturae Sinica
基金 教育部科学技术研究重点项目(109084)
关键词 MICRORNA 生物信息学预测 果树 EST microRNA bioinformatics prediction fruit crop EST
  • 相关文献

参考文献26

  • 1Ambros V, Bartel B, Barrel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. 2003. A uniform system for microRNA annotation. RNA, 9:277 - 279.
  • 2Berezikov E, Cuppen E, Plasterk R H. 2006. Approaches to microRNA discovery. Nature Genetics, 38.. $2 - $7.
  • 3蔡斌,李成慧,彭日荷,熊爱生,高峰,姚泉洪,章镇.葡萄microRNA的计算识别[J].华北农学报,2008,23(B10):213-216. 被引量:5
  • 4Carra A, Mica E, Gambino G, Pindo M, Moser C, Enrico M P, Schubert A. 2009. Cloning and characterization of small non-coding RNAs from grape. Plant Journal, 59:750 - 763.
  • 5Carthew R W, Sontheimer E J. 2009. Origins and mechanisms ofmiRNAs and siRNAs. Cell, 136 (4) : 642 - 655.
  • 6Chen X. 2005. MicroRNA biogenesis and function in plants. FEBS Lett, 579 (26) : 5923 - 5931.
  • 7Gleave A P, Ampomah-Dwamena C, Berthold S, Dejnoprat S, Karunairetnam S, Nain B, Wang Y Y, Crowhurst R N, MacDiarmid R M. 2008. Identification and characterization of primary microRNAs from apple ( Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genet Genomes, 4: 343- 358.
  • 8Griffiths-Jones S, Saini H K, Dongen S V, Enrigh A J. 2008. miRBase: Tools for microRNA genomics. Nucleic Acids Research, D 154 - D158.
  • 9Jones-Rhoades M W, Bartel D E 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14 (6): 787- 799.
  • 10Lewis B P, Burgf C B, Bartel D P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNAtargets. Cell, 120:15 - 20.

二级参考文献30

  • 1BaoHongZHANG,XiaoPingPAN,QingLianWANG,GeorgeECOBB,ToddA.ANDERSON.Identification and characterization of new plant microRNAs using EST analysis[J].Cell Research,2005,15(5):336-360. 被引量:74
  • 2Barrel D E MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297.
  • 3Llave C, Kasschau K D, Rector M A, Carrington J C. Endogenous and silencing-associated small RNAs in plants. The Plant Cell, 2002, 14: 1605-1619.
  • 4Sunkar R, Zhu l K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis./he Plant Cell, 2004, 16: 2001-2019.
  • 5Xie Z X, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C. Expression of Arabidopsis MIRNA genes. Plant Physiology, 2005, 138(4): 2145-2154.
  • 6Park M Y, Wu G, Gonzalez-Sulser A, Vaucheret H, Poething R S Nuclear processing and export of microRNAs in Arabidopsis Proceedings of the National Academy of Sciences of USA, 2005 102(10): 3691-3696.
  • 7Xie Z X, Kasschau K D, Carrington J C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by mieroRNA-guided mRNA degradation. Current Biology, 2003, 13: 784-789.
  • 8Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell, 2003, 15: 2730-2741.
  • 9Chen X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022-2025.
  • 10Lauter N, Kampani A, Carlson S, Goebel M, Moose S E MicroRNA172 down-regulates glossyl5 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of USA, 2005, 102(26): 9412-9417.

共引文献13

同被引文献237

引证文献15

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部