期刊文献+

基于最优化理论的任意多边形最大内圆的求解方法 被引量:2

An Algorithm for the Largest Internal Circle in Arbitrary Polygon base on Optimized Theory
下载PDF
导出
摘要 针对任意多边形,研究其内圆圆心与各边距离的关系,采用最优化理论建立非线性规划数学模型,求最大内圆,在matlab2008b上编程测试,验证了该方法的可行性及正确性。 In view of the arbitrary polygon,this paper studies the relationships between the center of circle and the distance from the center to each side of it.The optimized theory is used to establish nonlinear programming mathematical model in order to find the largest internal circle.The programs have been tested on matlab2008b confirmed the feasibility and correctness of this algorithm.
作者 蒋梅艳 文绘
出处 《装备制造技术》 2010年第6期144-145,共2页 Equipment Manufacturing Technology
关键词 多边形 最大内圆 非线性规划 polygon the largest internal circle nonlinear programming
  • 相关文献

参考文献3

二级参考文献12

  • 1张保钢,朱凌.点在多边形内的测试[J].测绘通报,1996(1):49-51. 被引量:10
  • 2陈树强,陈学工,王丽青.判定检测点是否在多边形内的新方法[J].微电子学与计算机,2006,23(8):194-195. 被引量:15
  • 3赵京东.再论映射相关边概念的多边形内外点判别算法[J].计算机辅助设计与图形学学报,2007,19(1):69-72. 被引量:9
  • 4中国矿业大学数学教研室编.数学手册[M].科学出版社,1980..
  • 5郭朝勇等编.AutoCAD R14 二次开发技术[M].清华大学出版社,1999.5.
  • 6尤立等编.AutoCAD2000实用教程[M].科学技术文献出版社,2002.2.
  • 7郭朝勇编.AutoCAD R14二次开发技术[M].清华大学出版社,1999,5..
  • 8尤立编.AutoCAD2000实用教程[M].科学技术文献出版社,2002,2..
  • 9孙家广 杨长贵.计算机图形学[M].北京:清华大学出版社,1995..
  • 10Feito F, Torres J C, Urena A. Orientation, simplicity, and inclusion test for planar polygons [J], Computers & Graphics, 1995, 19(4): 595-600.

共引文献17

同被引文献24

  • 1王润科,张彦丽.判断点与多边形位置关系的算法综述[J].甘肃联合大学学报(自然科学版),2006,20(6):32-35. 被引量:20
  • 2张翔,陈建能.机械优化设计[M],北京:科学出版社,2012.
  • 3Berman P and Lingas A. 1997. A nearly optimal parallel algorithm for the Voronoi diagram of a convex polygon. Theoretical Computer Science, 174(1/2): 193-202 [DOI: 10.1016/S0304-3975(96)00024- 2].
  • 4Cheonga O, Everettb H, Glisse M, Gudmundsson J, Homus S, Lazard S, Lee M and Na H S. 2011. Farthest-polygon Voronoi diagrams. Computational Geometry, 44(4): 234-247.
  • 5Drysdale R L and Lee D T. 1978. Generalized Voronoi Diagrams in the plane // 16th Annual Allerton Conference on Communication, Control and Computing: 833-842.
  • 6Joseph O R. 2005. Computational Geometry in C. 2nd edn. Cambridge: Cambridge University Press: 124-149.
  • 7Kirkpatrick D G. 1979. Efficient computation of continuous skeletons // Proceedings of the 20th Annual Symposium on Foundations of Computer Science: 18-27 [DOI: 10.1109/SFCS.1979.15a].
  • 8Lee D T. 1982. Medial Axis Transformation of a Planar Shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(4): 363-369 [DOI: 10.1109/TPAMI.1982.4767267 ].
  • 9Oishi Y and Sugthara K. 1995. Topology Oriented Divide-and-Conquer Algorithm for Voronoi Diagrams. Graphical Models and Image Pro- cessing, 57(4): 303-314 [DOI: 10.1006/gmip.1995.1027 ].
  • 10de Moura Pinto F and dal Sasso Freitas C M. 2011. Dynamic Voronoi di- agram of complex sites. The Visual Computer, 27(6/8): 463-472 DOI: 10.1007/s00371-011-0581 -z].

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部