期刊文献+

基于斐波那契数列采样的BP神经网络金融时间序列短期趋势预测 被引量:2

Financial Time Series Prediction of Short-term Trend Using Neural Networks Base on Fibonacci Series Sampling
下载PDF
导出
摘要 金融市场趋势预测研究一直都是热点题目,针对金融时间序列非线性特点用神经网络建立预测模型早已是研究热点。本文在吸取前人利用神经网络预测的经验下,提出利用自然界神奇数列斐波那契数列对金融时间序列采样。实验证明对金融时间序列短期趋势预测斐波那契数列采样的优越性,为了去除金融时间序列存在的大量噪音,本文利用指数平均数平滑原始价格数据,避免了利用移动平均平滑造成的滞后问题。本文所用的金融时间序列数据是欧元/美元的1小时收盘价,实验结果表明外推一步预测方向命中正确率可以达到75%以上,同时做了多步外推预测,证明5步外推趋势正确命中依然可以达到60%以上。 Predicting the trend of financial market is always an attractive research branch,especially using of Neutral Network to model nonlinear financial time series. We propose a new sampling method using Fibonacci series based on the previous researcher's experience of prediction with Neutral Network. Our experiments show the advantage of using Fibonacci series for sampling. In order to eliminate massive noises in financial time series,we use exponential average to preprocess raw data,which can avoid the lagging problem brought by moving average. In this paper,1 hour close price of EUR /USD is used. Our results show the accuracy of prediction for direction of extrapolation by one step can be improved to 75%. Furthermore,we modified our model to predict direction of extrapolation by multiple steps. The results still show the accuracy is above 60%.
出处 《管理学家(学术版)》 2010年第5期50-60,共11页
关键词 预测 短期趋势 金融时间序列 神经网络 斐波那契数列 forecasting short-term trend financial time series neural networks fibonacci series
  • 相关文献

参考文献18

  • 1Farmer J D. Market force, ecology and evolution [J]. Industrial and Corporate Change, 2002, 11(5): 895-953.
  • 2Farmer J D, Joshi S. The price dynamics of common trading strategies [J]. Journal of Economic Behavior and Organization, 2002, 49(2): 149-171.
  • 3LeBaron B. Agent-Based Computational Finance: Suggested Readings and Early Research [J]. Journal of Economic Dynamics and Control, 2005, 24(5): 679-702.
  • 4Pan H P, Sornette D. and Kortanek K. Intelligent Finance An introduction [J]. China Journal of Finance. 2005, 3(3): 99-106.
  • 5Pan H P, Sornette D. and Kortanek K. Intelligent Finance An Emerging Direction [J]. Journal of Quantitative Finance 2006, 6(4): 273-277.
  • 6Lo A W, KacKinlay A C. Stock prices do not follow random walks: Evidence from a simple specification test [J]. Review of Financial Studies, 1988, 1(1): 41-66.
  • 7Campbell J Y, Shiller R. The dividend-price ratio and expectations of future dividends and discount factors [J]. Review of Financial Studies, 1988, 1 (3): 195-227.
  • 8Sornette D. Critical Phenomena in Natural Sciences, Chaos, Fractals, Self Organization and Disorder: Concepts and Tools [M]. Berlin: Springer-Verlag Heidelberg GmbH and Co.K, 2002.
  • 9Sornette D, Johnansen A. and Bouchaud J P. Stock market crashes, precursors and replicas [J]. Journal de Physique, 1996, 6(1): 167-175.
  • 10Somette D. A complex system view of why stock markets crash [J]. New Thesis, 2004, 01(1): 5-17.

二级参考文献22

共引文献39

同被引文献17

  • 1赵秀梅,赵宗昌.Fibonacci数列的应用研究[J].山东建筑工程学院学报,2004,19(2):73-75. 被引量:6
  • 2卢湘鸿.浅议计算思维能力培养与大学计算机课程改革方向[c]//全国高等院校计算机基础教育研究会编.全国高等院校计算机基础教育研究会2012年会学术论文集.北京:清华大学出版社,2012:171.175.
  • 3周以真.Computational Thinking[J].Communications of the ACM,2006,49(3):33-35.
  • 4冯博琴.计算思维驱动的计算机基础课程改革思考和实践[EB/OL].http://www.51eds.com/z/forum2012/,(2013-8-20)[2014-02-25].
  • 5谭浩强.研究计算思维坚持面向应用[c]//全国高等院校计算机基础教育研究会.全国高等院校计算机基础教育研究会2012年会学术论文集.北京:清华大学出版社,2012:10.
  • 6.德罗斯特效应[EB/0L].维基百科http://zh.wikipedia.org/wiki/德罗斯特效应,(2013-07-27)[2014-02-25].
  • 7.CSDN.NETFibonacci Nim(斐波那契取石子博弈)[EB/OL].博客频道http://blog.csdn_net/qq429205464/article/details/6731636,[2013-08-30].
  • 8.汉诺塔[EB/OL].维基百科http//zh.wikipedia.org/wiki/汉诺塔,(2013-07-28)[2014-02-25].
  • 9.《达芬奇密码》斐波那契伽利略和比萨(3)[EB/OL].搜狐博客http://sinoger.blog.sohu.com/12420190.html,(2013-07-16)[2014-02-25].
  • 10.告别编程课MIT展示自然语言编程[EB/OL].天极网http://dev.yesky.com/406/35250406.shtml,(2013-107-16)[2014-02-25].

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部