期刊文献+

一种新的基于粗糙集构造决策树的方法 被引量:1

NEW DECISION TREE GENERATION ALGORITHM BASED ON ROUGH SET
下载PDF
导出
摘要 单变量决策树算法生成的决策树具有规模庞大、规则复杂且不易理解的不足。采用粗糙集相对核、加权粗糙度的概念和类别因子相结合的方法,提出一种新的决策树生成算法。对于即将生长的节点,若节点样本的类别因子大于给定阈值,则停止生长该节点,如此就有效地避免了划分过细的问题。通过实验说明,该算法比传统的ID3算法生成的决策树更简单、更易于理解、抗噪声能力更强。 The decision tree generated by univariate decision tree algorithm has defects of huge in size,complicated rules and difficult in comprehensibility.The algorithm proposed in the paper generates decision tree by integrating relative core and weighted roughness with category factor.The node to be grown will stop growing if whose category factor is bigger than the given threshold,so it avoids the problem of dividing too fine.Experiment indicates that the decision tree generated by this algorithm is simpler,more understandable and more antinoise than the one generated by ID3.
出处 《计算机应用与软件》 CSCD 2010年第6期95-97,共3页 Computer Applications and Software
基金 辽宁省教育厅基金项目(20031066)
关键词 单变量决策树 多变量决策树 加权粗糙度 类别因子 相对核 Univariate decision tree Multivariate decision tree Weighted roughness Category factor Relative core
  • 相关文献

参考文献12

二级参考文献25

  • 1蒋芸,李战怀,张强,刘扬.一种基于粗糙集构造决策树的新方法[J].计算机应用,2004,24(8):21-23. 被引量:30
  • 2[1]Quinlan JR. C4.5: Programs for Machine Learning [M]. San Mateo, CA: Morgan Kaufmann, 1993.
  • 3[2]Liu B, Hsu W, Ma Y. Intergrating Classification and Association Rule Mining [A]. Proc KDD[C], 1998.
  • 4[3]Buntine WL, Weigend AS. Computing Second Derivatives in Feed-forward Networks: A Review [J]. IEEE Transactions on Neural Networks, 1991,5(3):480-488.
  • 5[4]Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines [M]. Cambridge Press, 2000. 1-18.
  • 6[5]Pawlak ZW. Rough Sets [J]. International Journal of Information and Computer Science, 1982,11(5):341-356.
  • 7[6]Pawlak ZW. Rough Sets and Intelligent Data Analysis [J]. Information Sciences, 2002,147(1-4):1-12.
  • 8[7]张文修,吴伟志,梁吉业. 粗糙集理论及方法 [M]. 北京:科学出版社,2003. 1-25.
  • 9[9]Beynon M. Reducts within the Variable Precision Rough Set Model: A Further Investigation [J]. European Journal of Operational Research, 2001, 134: 592-605.
  • 10[10]Murphy P, Aha W. UCI Repository of Machine Learning Databases [DB/OL]. http://www.ics.uci.edu/~mlearn/MLRepository.html, 1996.

共引文献312

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部