期刊文献+

基于运动分割和肤色判别的人体目标检测方法 被引量:1

A HUMAN OBJECT DETECTION METHOD BASED ON MOTION SEGMENTATION AND COMPLEXION DISCRIMINATION
下载PDF
导出
摘要 针对静止摄像机近距离拍摄目标的情形,提出一种人体目标检测方法,主要包含两个步骤:在运动分割步骤中,利用长程和短程两次背景更新获取精确的背景图像,同时利用基于颜色空间的阴影判定方法消除阴影的干扰;在目标检测步骤中,将肤色检测与人体目标的几何比例经验值相结合,对运动目标进行判断。 To deal with the situation that the human objects are captured by a still camera in a short distance,a human object detection method is proposed in this paper.It mainly includes two steps:in the motion segmentation step,the background image is precisely obtained by using the long-term and short-term background updating algorithms each,and the shadows are cleared up via the colour space based shadow discrimination approach.In the object detection step,this method utilizes the complexion detection and the empirical value of height/width ratio of human body together to discriminate the motion objects.
作者 梁英宏
出处 《计算机应用与软件》 CSCD 2010年第6期111-114,共4页 Computer Applications and Software
基金 广东省科技计划项目(2006B60155)
关键词 人体目标检测 运动分割 肤色判别 背景更新 Human object detection Motion segmentation Complexion discrimination Background updating
  • 相关文献

参考文献8

二级参考文献26

  • 1Wren C R, Azarbayejani A, Darrell T, et al. Real-time tracking of human body [J]. IEEE Trails Pattern Anal Maeh Intell, 1997, 19(7): 780.
  • 2Haritaoglu I, Harwood D, Davis L S. W4-A real time system for detection and tracking people and their parts[A]. Proc Third Face and Gesture Recognition Conference[C]. Japan, 1998. 222.
  • 3Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance [A]. Proc IEEE Int ConfComputer Vision, Vol 1 [C]. Greece, 1999.255.
  • 4Grimson W E L, Stauffer C. Adaptive background mixture models for real-time tracking [A]. Proc IEEE Conference Computer Vision and Pattern Recognition, Vol 1 [C].USA, 1999.22.
  • 5Sonka Milan, Hlavac Vaclav, Boyle Roger. Image Processing, Analysis and Machine Vision [M]. PWS, 1999.
  • 6Xu F, Fujimura K. Human detection using depth and gray images [ A]. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance [ C ] , Miami, Florida, 2003: 115 -121.
  • 7Vapnik V. The Nature of Statistical Learning Theory[ M]. Berlin:Springer-Verlag, 1995.
  • 8University of California, San Diego. Gait data[ EB/OL]. http://pages. cpsc. ucalgary. ca/- boyd/gait/experiment. html, 1996-12-12.
  • 9Gavrila D M. The visual analysis of human movement: A survey [ J ].Computer Vision and Image Understanding, 1999,73 ( 1 ) :82 - 98.
  • 10Nicolaou C A, Egbert A L, Lacher R C, et al. Human shape recognition using the method of moment and artificial neural networks [ A]. In: International Joint Conference on Neural Networks [ C ],Washington, DC, the USA, 1999:3147 -3151.

共引文献111

同被引文献13

  • 1李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 2Dalai N ,Triggs B. Histograms of oriented gradients for human detection[ C ]//Proc of IEEE computer society confe:nce on computer vision and pattern recognition. San Diego, CA, USA : IEEE Computer Society,2005:886-893.
  • 3Wang Xiaoyu, Han T X, Yan Shuicheng. An HOG-LBP hu- man detector with partial occlusion handling [ C]//Proc of IEEE international conference on computer vision. Kyoto: IEEE ,2009:32-39.
  • 4Pang Yanwei, Yuan Yuan, Li Xuelong, et al. Efficient HOG human detection [ J ]. Signal Processing, 2011,91 ( 4 ) : 773 - 781.
  • 5Zhang Xin, Gao Yuehua, Wang Xiaotao, et al. A method for detecting pedestrians in video surveillance scenes[ C ]//Proc of international conference on systems and informatics. Yantai : IEEE ,2012:2016-2019.
  • 6Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video[ C ]//Proc of IEEE work- shop on application of computer vision. Washington DC : IEEE Computer Society, 1998 : 19-21.
  • 7Chai D, Ngan K N. Locating facial region of a head- and- shoulders color image [ C ]//Proc of 3rd IEEE international conference on automatic face and gesture recognition. Nara: IEEE, 1998 : 124-129.
  • 8Ojala T, Pietikainen M. Muhiresolution gray-scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2002,24 ( 7 ) : 971-988.
  • 9黄茜,顾杰峰,杨文亮.基于梯度向量直方图的行人检测[J].科学技术与工程,2009,9(13):3646-3651. 被引量:19
  • 10于成龙.基于PCA的特征选择算法[J].计算机技术与发展,2011,21(4):123-125. 被引量:18

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部