期刊文献+

结合奇异值分解和时间权重的协同过滤算法 被引量:11

COLLABORATIVE FILTERING ALGORITHM COMBINING SINGULAR VALUE DECOMPOSITION AND TIME WEIGHT
下载PDF
导出
摘要 协同过滤是现阶段最成功的推荐技术之一。提出一种结合奇异值分解和时间权重的协同过滤算法。与使用奇异值分解来降维的最近邻法不同,该算法通过梯度下降法进行奇异值分解,并直接将分解的结果用于预测评分。同时,该算法根据评分时间,为每个评分赋予不同的时间权重,考虑了用户兴趣随时间的变化。实验表明,该算法相较于传统协同过滤算法,能够获得更高的推荐精度。 Collaborative filtering is one of the most successful recommendation techniques nowadays.In this paper,a collaborative filtering combining the singular value decomposition(SVD) algorithm and the time weight is proposed.Unlike the Nearest Neighbour methods which use SVD as a way to reduce dimensions,our algorithm uses the gradient descent algorithm to calculate the SVD,and predicts the ratings directly based on the results of the SVD.Meanwhile,each rating score is assigned with a time weight based on the rating time,and thus the interest drift with time is taken into consideration.Experimental results show that this algorithm is able to acquire higher recommendation accuracy in comparison with the traditional collaborative filtering algorithms.
作者 顾申华
出处 《计算机应用与软件》 CSCD 2010年第6期256-259,共4页 Computer Applications and Software
关键词 协同过滤 奇异值分解 梯度下降法 时间权重 Collaborative filtering Singular value decomposition Gradient descent algorithm Time weight
  • 相关文献

参考文献7

  • 1Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C] //Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,1998:43-52.
  • 2Sarwar B,Karypis G,et al.Item-based collaborative filtering recommendation algorithms[C] //Proceedings of the 10th international conference on World Wide Web,2001:285-295.
  • 3邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 4赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140
  • 5Vozalis M,Margaritis K.Applying SVD on item-based filtering[C] //Proceedings of the 5th International Conference on Intelligent Systems Design and Applications,2005:464-469.
  • 6Paterek A.Improving Regularized Singular Value Decomposition for Collaborative Filtering[C] //Proceedings of KDD Cup and Workshop,2007.
  • 7郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25

二级参考文献24

  • 1余力,刘鲁,李雪峰.用户多兴趣下的个性化推荐算法研究[J].计算机集成制造系统,2004,10(12):1610-1615. 被引量:45
  • 2Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 3Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 4Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 5Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 7Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 8Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 9Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 10Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.

共引文献675

同被引文献98

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部