摘要
利用铁木辛柯能量法研究了具有初始缺陷的薄板受端面载荷作用下的变形行为.针对典型边界状况,选定合适的位形函数,导出了总势能表达式及其一阶和二阶变分.并以方板作为特例讨论了屈曲行为及二次屈曲问题.同时还指明了外力势能对变形行为的影响.
The behavior of rectangular thin plates is studied with initial imperfections subjected to uniaxial compression at one lateral edge by Timoshenko method. The unknown distributions of displacements are chosen to satisfy given boundary conditions. The expression of total potential energy, together with its corresponding first and second variation are derived. A particular example of a square plate is discussed. It is pointed out that the work done by the compressive force is neglected by some authors affects the post buckling behavior.
出处
《华中理工大学学报》
CSCD
北大核心
1999年第2期46-48,共3页
Journal of Huazhong University of Science and Technology
基金
中国船级社研究基金
关键词
屈曲载荷
二次屈曲
矩形薄板
薄板
变形
载荷
buckling load
energy method
variational equation
secondary buckling