期刊文献+

非线性聚焦生成畸形波规律之研究

Investigation of freak wave generation via nonlinear focusing
下载PDF
导出
摘要 非线性聚焦是畸形波生成的一种可能机理。采用可以描述非线性聚焦现象的四阶修正非线性薛定谔方程,模拟了边带扰动条件下波列空间演化过程中畸形波的生成。不同初始边带扰动条件和不同波陡等情况下的数值试验结果表明,满足边带不稳定性条件时,初始边带扰动条件和波陡对畸形波的生成具有重要的影响,并给出了畸形波生成的规律。 A possible mechanism of freak wave generation is nonlinearity focusing.Generation of freak waves under the condition of sideband disturbance was numerically simulated within the framework of the modified fourth-order nonlinear Schroedinger equation which can describe nonlinear focusing phenomenon.Numerical experiments were performed for different sideband disturbances and wave steepness.Results show that initial sideband disturbances and wave steepness play an important role in the formation of freak waves when sideband instability is satisfied.And generation rules of freak waves under sideband disturbance condition are also given.
出处 《水道港口》 2010年第3期153-156,180,共5页 Journal of Waterway and Harbor
基金 国家"863"计划项目(2009AA05Z428) 国家自然科学基金项目(10902039) 中科院广州能源研究所所长创新基金项目(0807r51001)
关键词 畸形波 非线性聚焦 边带扰动 生成规律 freak waves nonlinear focusing sideband disturbance generation rule
  • 相关文献

参考文献8

  • 1Kharif C,Pelinovsky E.Physical mechanisms of the rogue wave phenomenon[J].European Journal of Mechanics B/Fluids,2003,22 (6):603-634.
  • 2Onorato M,Osborne A B,Serio M,et al.Freak waves in random oceanic sea states[J].Physical Review Letters,2001,86(25):5 831-5 834.
  • 3Janssen P A E M.Nonlinear Four-Wave Interactions and Freak Waves[J].Journal of Physical Oceanography,2003,33(4):863-884.
  • 4Fochesato,Christophe,Grilli S,et al.Numerical modeling of extreme rogue waves generated by direction energy fields[J].Wave Motion,2007,44(5):395-416.
  • 5张运秋,张宁川,裴玉国.畸形波数值模拟的一个有效模型[J].大连理工大学学报,2008,48(3):406-410. 被引量:6
  • 6张运秋,胡金鹏,张宁川.Efficient Simulation of Freak Waves in Random Oceanic Sea States[J].China Ocean Engineering,2009,23(1):157-165. 被引量:4
  • 7Lo E,Mei C C.A numerical study of water-wave modulation based on a higher-order nonlinear Schroedinger equation[J].Journal of Fluid Mechanics,1985,150:395-416.
  • 8Dysthe K B.Note on a modification to the nonlinear Schroedinger equation for application to deep water waves[J].Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1979,369:105-114.

二级参考文献23

  • 1KLINTING P,SAND S.Analysis of prototype freak waves[C]//Coastal Hydrodynamics.New York:ASCE,1987:618-632
  • 2KHARIF C,PELINOVSKY E.Physical mechanisms of the rogue wave phenomenon[J].European Journal of Mechanics B/Fluids,2003,22:603-634
  • 3OSBORNE A R,ONORATO M,SERIO M.The nonlinear dynamics of rogue waves and holes in deep water gravity wave trains[J].Physics Letters A,2000,275:386-393
  • 4OSBORNE A R.The random and deterministic dynamics of 'rogue waves' in unidirectional,deep water wave trains[J].Marine Structures,2001,14:275-293
  • 5ONORATO M,OSBORNE A R,SERIO M,et al.Freak waves in random oceanic sea states[J].Physical Review Letters,2001,86(25):5831-5834
  • 6PELINOVSKY E N,SLUNYAEV A V,TALIPOVA T G,et al.Nonlinear parabolic equation and extreme waves on the sea surface[J].Radiophysics and Quantum Electronics,2003,46(7):451-463
  • 7BENJAMIN T B,FEIR J E.The disintegration of wave trains on deep water,Part 1.Theory[J].Journal of Fluid Mechanics,1967,27:417-430
  • 8DYSTHE K B.Note on a modification to the nonlinear Schrdinger equation for application to deep water waves[J].Proceedings of the Royal Society of London Series A,1979,369:105-114
  • 9LONGUET-HIGGINS M S.The instability of gravity waves of finite amplitude in deep water,II.Subharmonics[J].Proceedings of the Royal Society of London Series A,1978b,360:489-505
  • 10LO E,MEI C C.A numerical study of water-wave modulation based on a higher-order nonlinear Schrdinger equation[J].Journal of Fluid Mechanics,1985,150:395-416

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部