摘要
随机蛙跳算法(Shuffled Frog Leaping Lgorithm,SFLA)是进化计算领域中一种新兴、有效的亚启发式群体计算技术,近几年来逐渐受到学术界和工程优化领域的关注。SFLA结合了具有较强局部搜索(Local Search,LS)能力的元算法(Memetic Algorithm,MA)和具有良好全局搜索(Global Search,GS)性能的粒子群算法(Particle Swarm Optimization,PSO)的特点,因此其寻优能力强,易于编程实现。详细阐述了SFLA的基本原理和流程,总结了SFLA目前在优化和工程技术等领域中的研究,展望了SFLA的发展前景。
Shuffled Frog Leaping Algorithm (SFLA) is a population-based novel and effective meta-heuristics computing method,which received increasing focuses from academic and engineering optimization fields in recent years. Since SFLA is a combination of Memetic Algorithm (MA) with strong Local Search (LS) ability and Particle Swarm Optimization (PSO) with good Global Search (GS) capability, it is of strong optimum-searching power and easy to be implementecl. In this paper, the fundamental principles and framework of SFLA were described. Then, the related researches of SFLA in the current optimization and engineering fields were summed up. Lastly, the future perspectives of SFLA were presented.
出处
《计算机科学》
CSCD
北大核心
2010年第7期16-19,共4页
Computer Science
基金
国家自然科学基金(70625001
70721001
70671095
70971017)
浙江省科技计划软科学研究项目(2009C35007)资助
关键词
随机蛙跳算法
亚启发式算法
工程优化
元算法
粒子群算法
Shuffled frog leaping algorithm, Meta-heuristies algorithm, Engineering optimization, Memetie algorithm, Particle swarm optimization