期刊文献+

网络蠕虫实验环境构建技术研究 被引量:4

Research on Network Worm Test-bed
下载PDF
导出
摘要 网络蠕虫实验环境可以为蠕虫研究提供有效的实验分析支持。在系统分析解析模型、报文级模拟、网络仿真、混合方法等蠕虫仿真环境构建技术的基础上,提出了虚实结合的蠕虫仿真模型。该模型综合了报文级模拟和网络仿真技术的优点,具有良好的扩展性和逼真度,为构建灵活可扩展的蠕虫实验环境奠定了重要基础。 Worm validation experiments are very important for worm research. Based on analysis of experiment environment construct method including mathematical modeling, simulation, emulation, test bed and hybrid modeling, an new worm model named virtual and real hybrid network worm emulation model was proposed. Because of combining simulation with emulation, the model balanced the fidelity and scalability very well.
出处 《计算机科学》 CSCD 北大核心 2010年第7期54-56,73,共4页 Computer Science
基金 国家863计划(2009AA01Z421)资助
关键词 网络蠕虫 实验环境 蠕虫模型 Network worm, Experiment environment, Worm model
  • 相关文献

参考文献13

  • 1The Spread of the Code-Red Worm (CRv2)[EB/OL].http://www.caida.org/research/security/code-red/coderedv2_analysis.xml.
  • 2Zou C C,Gong W,Towsley D.Code Red worm propa-gation modeling and analysis[C] ∥Proc.of the 9th ACM Symp.on Computer and Communication Security.Washington,2002:138-147.
  • 3Nicol D M.The Impact of Stochastic Variance on Worm Propagation and Detection[C] ∥Proc.of the 2006 ACM Workshop on Rapid Malcode,Alexandria Virginia.NY:Publications Dept.,ACM,Inc,2003:11-18.
  • 4Li Lunquan,Jiwasurat S,Liu Peng.George Kesidis§Emulation of "single-packet" UDP Scanning Worms in Large Enterprises.
  • 5Riley G F,Sharif M I,Lee W.Simulating Internet Worms[C] ∥12th IEEE/ACM International Symposium on Modeling,Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS).Oct.2004.
  • 6邓洁,段海新.基于SSFNet的蠕虫传播细粒度建模与仿真[J].小型微型计算机系统,2008,29(1):145-149. 被引量:8
  • 7Kalyan S.Perumalla Srikanth,Sundaragopalan.High-Fidelity Modeling of Computer Network Worms[C] ∥20th Annual Computer Security Applications Conference (ACSAC'04).2004:126-135.
  • 8Sewani A.Packet Level Worm Simulation and Analysis[OL].http://www.cs.berkeley.edu/-anil/papers/worm_sim.ps.
  • 9http://www.emulab.net.
  • 10http://www.isi.edu/deter.

二级参考文献10

  • 1文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 2Michael Liljenstam, Yougu Yuan, BJ Premore, et al. A mixed abstraction level simulation model of large-scale internet worm infestations [C]. In: Proceedings of 10th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS'02), 2002, 0109-0116.
  • 3Kalyan S Perumalla, Srikanth Sundaragopalan. High-fidelity modeling of computer network worms[C]. In: Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC'04), December 6-10, 2004.
  • 4David M Nicol, Jason Liu, Michael Liljenstam, et al. Simulation of large-scale networks using SSF[C]. In: Preceedings of the 35th Conference on Winter Simulation Conference. New Orleans, LA, 2003, 650-657.
  • 5Scalable Simulation Framework[EB/OL]. http://www. ssfnet. org/homePage. html.
  • 6David M Nicol. Scalability of network simulators revisited[C]. In: Proceedings of the Communication Networks and Distributed Systems Modeling and Simulation Conference, Orlando, FL. February, 2003.
  • 7Chen Z, Gao L, Kwiat K. Modeling the spread of active worms[C]. In: Proceedings of the IEEE INFOCOM 2003, San Francisco, April, 2003.
  • 8David M Nicol, Michael Liljenstam, Jason Liu. Multiscale modeling and simulation of worm effects on the internet routing infrastructure[C]. In: Proceedings of the 13th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation (Performance TOOLS 2003), Urbana, IL. September 2-5, 2003.
  • 9Arno Wagner, Thomas Dubendorfer, Roman Hiestand, et al Experiences with worm propagation simulations[C]. 1st Work shop on Rapid Malcode WORM 2003. Washington, DC, USA October 34-41, 2003.
  • 10Yin Zhuan-yong, Liu Shou-qiang, Huang Wei, et al. Deeply analysis of computer network worms and virus[J]. Network Computer Security, 2003, (9) :73-75.

共引文献7

同被引文献25

  • 1刘轶,肖凯平,李艳萍.一种网络仿真实验床映射问题的启发式算法[J].西安交通大学学报,2006,40(8):878-882. 被引量:3
  • 2Staniford S,Paxson V Weaver N.How to own the fnternet in Your Spare Time[C].Proceed--ing of the l lth Usenix Security Symp. San Francisco,2002:149-167.
  • 3Bonabeau K, Dorigo M, Theraulaz G. Swarm intelligence: From natural Lo artificial systems[M].New York: Oxford University Press, 1999: 40-58.
  • 4Weaver N Potential Strategies for High Speed Active Worms: A worst case analysis 2002.
  • 5Chen Yu-feng,Dong Ya-bo,Lu Dong-ming,et al.Detecting randomly scanning worms based on heavy tailed property[C]//Proc.of 2005 IEEE International Conference on Networking,Sensing and Control.Orlando,Florida,2005:354-358.
  • 6Robertson S,Siegel E V,Miller M,et al.Surveillance detection in high bandwidth environments[C]//Proc.of DARPA DISCEX 111 Conefrence.2003:130-139.
  • 7Jung J,Paxson V,Begrer A W,et al.Fast Portscan detection using sequential hypothesis testing[C]//Proc.of the IEEE Symposium on Security and Privacy.2004:211-225.
  • 8顾雨婕.用于行为分析反木马的模糊分类算法研究[D].杭州:浙江工业大学,2008.
  • 9Moskovitch R,Elovici Y,Rokach L.Detection of unknown computer worms based on behavioral classification of the host[J].Computational Statistics & Data Analysis,2008,52 (9):4544-4566.
  • 10李晶皎,赵丽红,王爱侠.模式识别[M].北京:北京电子工业出版社,2010.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部