摘要
数字图像真实性检测在司法鉴定等领域有着重要的作用。常见的图像拼接篡改会降低图像像素直接的相关性,这可以通过一些统计特征反映出来。采用特征提取-分类的方法,提取矩特征、基于二维相位一致性的统计特征,结合DCT域的马尔可夫特征,利用SVM分类器进行分类,实现了拼接图像的盲检测。实验结果表明,该方法有较好的鉴别准确率,可达91.75%。
The authenticity detection of digital images is of great significance in judicial identification. Image splicing is used very often as a falsification method and it will certainly decrease the correlation between image pixels which can he reflected by some statistical features. Combined with Markov features,a new approach which uses moment and phase congruency to extract features was proposed and SVM classifier was used to judge the category an image belongs to. The experimental results show that the proposed method can achieve a detection accuracy of 91.75 %.
出处
《计算机科学》
CSCD
北大核心
2010年第7期277-279,共3页
Computer Science
基金
国家863项目(编号:2007AA01Z455)
国家自然科学基金项目(编号:60772098
60772042)
教育部新世纪优秀人才支持计划项目(编号
NCET-0600393)
2007年上海市曙光计划
自然图像智能取证技术研究(60772040)资助
关键词
拼接图像
矩特征
盲检测
图像特征
分类器
Spliced image,Moment feature,Blind detection,Image features,Classifier