期刊文献+

一种改进的BP神经网络在教学过程中的应用

Application of teaching process about improved BP neural network
下载PDF
导出
摘要 利用一种改进的BP神经网络(PSO-BP)建立的教学成绩给定模型,在教学过程中所涉及的平时成绩给定的指标体系基础上,利用给定指标值作为输入,成绩估算值作为输出,通过PSO对BP神经网络的参数进行训练和学习,并利用Matlab软件建立实验平台。实验结果表明:新算法充分利用了神经计算的快速性以及粒子群算法的全局寻优能力,使得模型具有良好的辨识精度,可以较好地解决教学过程中平时成绩给定的动态问题。 A teaching achievement given model was established based on improved BP neural network (PSO-BP).In the basis of achievement given indicator system during teaching process,the index value are input and achievement estimates are output,PSO was applied to the parameter learning and training of BP neural network.Experimental results of Matlab simulation showed that the new arithmetic did a better job which make the best of faster neural computation and PSO’s global optimization ability,and making the model has good identification accuracy,it can effectively solve the dynamic problem of regular achievement given in teaching process.
作者 付丽辉
出处 《中国现代教育装备》 2010年第13期60-62,共3页 China Modern Educational Equipment
基金 淮阴工学院教育教学研究课题阶段成果 课题批准号:JYC200911
关键词 BP神经网络 粒子群算法 平时成绩给定 MATLAB BP neural network particle swarm optimization regular achievement given Matlab
  • 相关文献

参考文献1

二级参考文献23

  • 1R.C. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. The 6th Int'l Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 2J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. In:Proc. IEEE Int'l Conf. Neural Networks. Piscataway, NJ:IEEE Service Center, 1995. 1942~1948.
  • 3M. Clerc. TRIBES-A parameter free particle swarm optimizer.http://clerc.maurice.free. fr/PSO, 2002-08-10/2003-10-08.
  • 4Hu Xiaohui, R. C. Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic systems. IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA,2002.
  • 5A. Salman. Discrete particle swarm optimization for heterogeneous task assignment problem. World Multiconference on Systemics,Cybernetics and Informatics(SCI 2001), Orlando, USA, 2001.
  • 6M. Clerc. Discrete particle swarm optimization: A fuzzy combinatorial black box. http: // clerc. maurice. free. fr/PSO/Fuzzy_Discrete_PSO/Fuzzy_DPSO. htm, 2000-04-01/2003-10-08.
  • 7T. Krink, J. S. Vesterstrom, J. Riget. Particle swarm optimization with spatial particle extension. The IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA, 2002.
  • 8Hirotaka, Yoshida, Kenichi. A particle swarm optimization for reactive power and voltage, control considering voltage stability.IEEE Int'l Conf. Intelligent System Applications to Power Systems, Rio de Janeiro, 1999.
  • 9M.S. Voss, Xin Feng. Arma model selection using particle swarm optimization and AIC criteria. The 15th Triennial World Congress, Barcelona, Spain, 2002.
  • 10K.E. Parsopoulos, M. N. Vrahatis. Particle swarm optimization method in multiobjective problems. The 2002 ACM Symposium on Applied Computing(SAC2002), Madrid, Spain, 2002.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部