期刊文献+

广义磁流体力学方程组的部分正则性 被引量:2

Partial Regularity of Generalized MHD Equations
下载PDF
导出
摘要 研究带分数次扩散项(-Δ)a和(-Δ)β的广义磁流体力学方程组(GMHD)的正则性。这一方程包含了Navier-Stokes方程与通常的磁流体力学方程组(MHD)。本文采用能量积分方法,研究GMHD方程的解用速度向量的分量来判定正则性,并且结果并不依赖于磁场函数。本文主要讨论α=β的情形。设u=(u1,u2,u3),=(u1,u2,0),0<α=β<2/3初始速度与初始磁场满足u0,b0∈H1(R3)。在上述条件下,本文指出,如果∈LP(0,T;Lq(R3))且(2α/p+3/q≤2a,或者∈L2((2α)/(2α-r))(0,T;(R3)),0≤r≤α,那么方程的解在[0,T]上依然是光滑的。 In this paper, the regularity of 3D generalized magneto-hydrodynamics (GMHD) equations with fractional dissipative terms ( -△)αand (-△)β is studied. The equations contain the well-known Navier-Stokes equations and magneto-hydrodynamics equations. The regularity problem of Navier-Stokes equation and generalized type, such as the magneto-hydrodynamics equation and the generalized Navier-Stokes equations, were studied extensively. But the problem is still unsettled now. Some researchers turned to study the regularities criterion of Naveir-Stokes equations in terms of the components of velocity, and got some of useful results. Since MHD and GMHD are far more difficult than Navier-Stokes equations, there are few similar results of these two equations. Using energy integral method, the regularity of GMHD equations in terms of two components of velocity is studied, and the results does not depend on the magnetic field. case α =β is considered in the paper. Let u = (u1, u2, u3 ) ,u = (u1, u2 ,0) ,0 〈 α =β 〈 3/2, the initial velocity and magnetic field satisfied uo ,bo ∈ H^1(R^3). Under these conditions, it is proved that if △↓∈LP(0,T;Lq(R3)) with 2α/p+3/q≤2α on ~0, T],or if △↓∈L2((2α)/(2α-r))(0,T;(R3))with0≤r≤α the solution remains smooth on[0, T].
作者 罗玉文
出处 《重庆师范大学学报(自然科学版)》 CAS 2010年第4期41-43,50,共4页 Journal of Chongqing Normal University:Natural Science
关键词 广义磁流体力学方程组 正则性 乘子空间 LEBESGUE空间 generalized magnetohydrodynamics equations regularity conditions multiplier spaces Lebesgue spaces
  • 相关文献

参考文献17

  • 1Stein E M. Singular integrals and differentiability properties of functions ( PMS-30 ) [ M ]. Princeton : Princeton University Press, 1971.
  • 2He C,Xin Z P. On the regularity of weak solutions to the magnetohydrodynamic equations [ J ]. J Diff Equations, 2005,213 (2) : 235-254.
  • 3Luo Y W. Regularity of weak solutions to the magneto-hydrodynamics equations in terms of the direction of velocity[ J]. Electron J Diff Equ,2009,132 : 1-7.
  • 4Wu J H. Bounds and new approaches for the 3D MHD equations[J]. J Nonlinear Sci,2008,12(4) :395-413.
  • 5Wu J H. Regularity results for weak solutions of the 3 D MHD equations [ J ]. Discrete Contin Dynam Systems ,2004,10 (1-2 ) :543- 556.
  • 6Cao C S, Wu J H. Two regularity criteria for the 3D MHD equations [ J ]. Journal of Differential Equations, 2010,248 (9) :2263- 2274.
  • 7Caflish R E, Klapper I, Steele G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD [ J ]. Comm in Math Phys, 1997,184 (2) :443-455.
  • 8Chen Q L, Miao C X,Zhang Z F. The Beale-Kato-Majda criterion to the 3D magneto-hydrodynamics equations [ J ]. Comm in Math Phys ,2007,275 ( 3 ) :861-872.
  • 9Zhou Y. Regularity criteria for the 3D MHD equations in terms of the pressure [ J ]. International Journal of Non-Linear Mechanics, 2006,41 ( 10 ) : 1174-1180.
  • 10Zhou Y, Gala S. Regularity criteria for the solutions to the 3D MHD equations in the multiplier space[ J ]. Z Angew Math Phys, 2010,61 (2) : 193-199.

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部