期刊文献+

计算一类非线性微分方程的正解

A Numerical Algorithm for Finding Positive Solutions of Nonlinear Differential Equation
下载PDF
导出
摘要 采用拟弧长延拓的数值算法,计算了一类带有Dirichlet边界条件的非线性微分方程的多个正解,并在一维空间中的两点边值完成了数值实验,数值实验结果与上下解方法得到的理论结果比对,进一步表明非线性微分方程正解的多解的存在性.回答了文献[4]的问题. The numerically positive solutions of the differential equation with Diriehlet boundary condition were investigated in this paper. Compared with sub - super solution method, the existence of numerical Poly - solutions was proved.
出处 《佳木斯大学学报(自然科学版)》 CAS 2010年第3期475-477,484,共4页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省优秀青年基金(2009SQRZ083) 安徽省自然科学基金项目(KJ2009B076Z) 上海市重点学科建设项目(S30405) 安徽财经大学科研项目(ACKYQ1065ZC)
关键词 正解 非线性凹凸型问题 上下解方法 拟弧长方法 positive solution concave - convex nonlinearity sub - super solution method pseudo arc length method.
  • 相关文献

参考文献14

  • 1Ambrnsetti A,Brezis H,Cerami G.Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems[J].J Funct Anal,1994,122:519-543.
  • 2Liu Zhaoli.Exact Number of Solutions of a Class of Two-point Boundary Value Problems Involving Concave and Convex Nonlinesrities[J].Nonlinear Analysis,2001,46:181-197.
  • 3Guo Dajun,Sun Jingydan.Some Global Generalization of Birkhoff-Kellogg Theorem and Applications[J].J Math Anal Appl,1988,129:231-242.
  • 4路慧芹.一类非线性两点边值问题的正解[J].数学物理学报(A辑),2007,27(5):845-854. 被引量:3
  • 5Pao C V.Block Monotone Iterative Methods for Numerical Solutions of Nonlinear Elliptic Equations[J].Numer Math,1995,72:239-262.
  • 6Deng Y,Chen G,Ni W M,et al.Boundary Element Monotone Iteration Scheme for Semilinear Elliptic Partial Differential Equations[J].Math Gomput,1996,65:943-982.
  • 7Choi Y S,McKenna P J.A Mountain Pass Method for the Numerical Solutions of Semilinear Elliptic Problems[J].Nonlinear Anal,1993,20:417-437.
  • 8Ding Z H,Costa D,Chen G.A High-linking Algorithm for Sign -changing Solutions of Somilinesr Elliptic Equations[J].Nonlinear Anal,1999,38:151-172.
  • 9Li Y,Zhou J X.A Minimax Method for Finding Multiple Critical Points and Its Applications to Semilinear PDEs[J].SIAM J Sci Comput,2002,23:840-865.
  • 10Yao X D,Zhou J X.A Minimax Method for Finding Multiple Critical Points in Banach Spaces and Its Application to Quasilinear Elliptic PDE[J].SIAM J Sci Comput,2005,26:1796-1809 (2005).

二级参考文献11

  • 1杨忠华,李业忠.求解非线性椭圆型方程边值问题的分歧方法[J].上海师范大学学报(自然科学版),2005,34(2):17-20. 被引量:5
  • 2Shuang-jie Peng.Multiple Boundary Concentrating Solutions to Dirichlet Problem of Hénon Equation[J].Acta Mathematicae Applicatae Sinica,2006,22(1):137-162. 被引量:4
  • 3CHOI Y S,MCKENNA P J.A mountain pass method for the numerical solutions of semi-linear elliptic problems[J].Nonlinear Anal,1993,20:417-437.
  • 4DING Z H,COSTA D,CHEN G.A high-linking algorithm for sign-changing solutions of semi-linear elliptic equations[J].Nonlinear Anal,1999,38:151-172
  • 5LI Y,ZHOU J X.A minimax method for finding multiple critical points and its application to semi-linear PDEs[J].SIAM J Sci Comput,2002,23:840-865.
  • 6Ambrosetti A, Brezis H, Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal, 1994, 122: 519-543
  • 7Liu Zhaoli. Exact number of solutions of a class of two-point boundary value problems involving concave and convex nonlinearities. Nonlinear Analysis, 2001, 46: 181-197
  • 8Guo Dajun, Sun Jingxian. Some global generalization of Birkhoff-Kellogg theorem and applications. J Math Anal Appl, 1988, 129: 231-242
  • 9Smoller J, Wasserman. Global bifurcation of steady-state solutions. J Differential Equations, 1991, 156: 588-596
  • 10Zhang L. Uniqueness of positive solutions of semilinear elliptic equations. J Differential Equations, 1995, 115: 1-23

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部