摘要
以辽宁省本溪市1955~1996年的菌痢逐月发病的数据(Xt)为根据,利用混沌动力学中的“相空间技术”,给出Xt时间趋势图、混沌相图和递次振幅图,发现Xt遵从混沌特性及分布模型:Xt+1=00026561r(Xt+1279722)2exp{-00000221(Xt-2559444)2},求出菌痢流行涨落“阈值”r∞=0981426·式中,t为发病月份,r为菌痢流行的涨落度·
On the basis of the monthly reported cases of bacillary dysentery in Benxi city in the periods 1955~1996, the reconstruction technique of phase space of chaotic dynamics was employed. They gave the time series,the phase portrait and Poincare section, and found a new model X t+1 =0 0026561r(X t+127 9722) 2 exp {-0 0000221(X t-255 9444) 2}. Also they determimed a criterion to control the infective rate of the epidemic r ∞=0 981426 . In model t is month of cases of bacillary dysetery and r is the infective rate of epidemic.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1999年第1期15-17,共3页
Journal of Northeastern University(Natural Science)
基金
国家教委博士点基金
辽宁省自然科学基金
关键词
细菌性痢疾
流行病
流行过程
浑沌特性
定量判据
the monthly reported cases of bacillary dysetery, the chaotic phase portrait, Poincare map.