期刊文献+

Q(Qr)空间及其性质 被引量:2

Some Propeties of Q(Qr) Spaces
下载PDF
导出
摘要 在qw*闭拓扑的基础上提出了Q(Qr)空间的概念,给出了一重要结论:连续线性算子u将局部凸分离空间X的包囿桶映为局部凸分离空间Y中的包囿集,则共轭算子u′保持qw*闭集,进而若X是Q空间,则Y也是Q空间. In this paper,the notions of Q(Qr) Spaces are introduced based on qw* closed topology and we draw important conclusions: let X,Y be lcs spaces,and u:X → Y a continuous linear operator,A bornological barrel in X,u(A),bornological set,then the dual operator u′of u preserves qw* closed sets,further if X is Q space,then Y is also Q space.
作者 黄利忠 罗成
出处 《山西大同大学学报(自然科学版)》 2010年第3期19-20,共2页 Journal of Shanxi Datong University(Natural Science Edition)
关键词 qw*闭 包囿桶 Q空间 Qr空间 qw* closed bornological barrel Q spaces Qr spaces
  • 相关文献

参考文献4

  • 1Taylor A E.Introduction to Fuctional Analysis(second edition)[M].New York:John Wiley & sons,1980.
  • 2关波.G空间与开映射定理[J].数学杂志,1986,6(2):157-164.
  • 3Kahon N J.Some Forms of The Closed Graph Theorem[J].Proc Cambrige Philos Soc,1971,70:401-408.
  • 4Wilansky A.Modern Methods in Topological Vector Spaces[M].New York:MeG-raw-Hill,1978.

共引文献2

同被引文献14

  • 1Taylor A E. Introduction to Fuctional Analysis[MJ. 2ed. New York, John. Wiley & sons, 1980.
  • 2Robertson A P, Robertson W. Topological Vector Spaces[M]. Cambridge, 1964.
  • 3V Ptak . Completeness and the open mapping theorem[J] . Bull Soc Math France, 86(1958): 71-74.
  • 4Wilansky Albert. Modern Methods in Topological Vector Spaces[M]. New York: McG Raw-Hill, 1978.
  • 5Husain T. The Open Mapping and Closed Graph Theorem in Topological Spaces[M]. Oxford, 1965.
  • 6Kalton N J. Some forms of the closed graph theorem [J].Proc Cambrige Philos Soc, 1971, 70: 401-408.
  • 7Mcintosch A G. On the closed theorem [J]. Proc Amer Math Soc, 1969, 20(2): 397-404.
  • 8关波.G空间与开映射定理[J].数学杂志,1986,6(2):157-164.
  • 9Taylor A E. Introduction to Fuctional Analysis[M]. 2th ed. New York :John Wiley & Sons, 1980.
  • 10Ptak V. Completeness and the open mapping theorem[J]. Bull Soc Math, 1958(86):41-74.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部