期刊文献+

遗传算法结合区间偏最小二乘法在草莓酸度近红外光谱检测的研究 被引量:2

Nondestructive Measurement of Acidity in Strawberry Using Genetic Algorithm and NIR Spectroscopy
下载PDF
导出
摘要 为探索近红外漫反射光谱技术快速无损检测草莓酸度的新方法,共采集了100颗草莓漫反射近红外光谱数据(波长范围1 000~1 800 nm)。通过采用标准正交变换(SNV)对原始光谱进行预处理后,将全光谱分为10个子区间,通过样本交互验证法优化每个子区间的最佳主成分数并计算区间对应的交互验证均方根误差(RMSECV),得到第4个子区间(共80个特征波长)对应的预测均方根误差最小。采用遗传算法对第4子区间内的波数点进一步优选出1 483,1 482,1 485,1 460 nm 4个波数点,用这4个波长的光谱信息建立的草莓近红外酸度模型预测集相关系数为0.937 5,预测集均方根误差为0.072。结果表明:间隔偏最小二乘法结合遗传算法能筛选出最优波长并能减少建模所用变量,提高检测精度,保证模型的稳健性。 In order to find a new method to measure the acidity in strawberry using near infrared spectroscopy,100 strawberries was selected to collect near infrared spectroscopy.The noise of the raw strawberry was moved by SNV preprocessing method.The strawberry spectra were divided into 10 intervals,and the fourth subset containing 80 data points was selected by interval partial least square(iPLS).To improve and simplify the prediction model of acidity content,genetic algorithms was proposed to select data points.And 1 483 nm,1 482 nm,1 485 nm,1 460 nm wavelengths were obtained finally.Combined with that,the prediction model was built with the prediction coefficient(Rp) of 0.937 5,the root mean square error of prediction(RMSEP) of 0.072.Consequently,near infrared spectroscopy could be used to measure the acidity content of strawberry.
出处 《江西农业大学学报》 CAS CSCD 北大核心 2010年第3期633-636,共4页 Acta Agriculturae Universitatis Jiangxiensis
基金 江西省科技厅支撑计划项目(2009BNA08500)
关键词 酸度 遗传算法 近红外漫反射光谱 间隔偏最小二乘法 acidity genetic algorithm near infrared spectroscopy interval partial least square
  • 相关文献

参考文献12

  • 1毕卫红,付兴虎,王魁荣,郝永发.水果品质近红外检测技术的研究现状与发展[J].激光与光电子学进展,2006,43(4):3-7. 被引量:9
  • 2Zou Xiao-bo,Zhao Jie-wen.Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of 'Fuji' apple based on different PLS models[J].Chemometrics and Intelligent Laboratory Systems,2007,87(1):43-51.
  • 3周亚凤,马岩松,张平.南果梨采收前与褐变有关的生理生化指标的变化[J].沈阳农业大学学报,2001,32(4):263-265. 被引量:21
  • 4陈香维,岳田利,杨公明.猕猴桃品质光谱无损检测技术研究进展[J].农业工程学报,2006,22(8):240-245. 被引量:20
  • 5Norgaard R,Saudland A,Wagner J,et al.Interval partial least-squares regression(iPLS):A comparative chemometric study with an example from near-infrared spectroscopy[J].Applied Spectroscopy,2000,54(3):413-419.
  • 6Xu Lu,Zhan Wen-Jun.Comparison of different methods for variable selection[J].Analytica Chimica Acta,2001,446:477-483.
  • 7Park B,Abbott J A,Lee K J,et al.Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicous and Gala apples[J].Transactions of the ASAE,2003,46(6):1721-1731.
  • 8Zhao Jie-wen,Chen Quan-sheng,Huang Xing-yi,et al.Qualitative identification of tea categories by near infrared spectroscopy and support vector machine[J].Journal of Pharmaceutical and Biomedical Analysis,2006,41(4):1198-1204.
  • 9闵顺耕,谢秀娟,周学秋,李力,严衍禄.近红外漫反射光谱的小波变换滤波[J].分析化学,1998,26(1):34-37. 被引量:14
  • 10Zou Xiao-bo,Zhao Jie-wen,Li Yan-xiao.Using genetic algorithm interval partial least squares selection of the optimal near infrared wavelength regions for determination of the soluble solids content of 'Fuji' apple[J].Journal of Near Infrared Spectroscopy,2007,15(3):153-159.

二级参考文献84

共引文献139

同被引文献30

  • 1Montero T M, Molla E M, Esteban R M, et al. Quality attributes of strawberry during ripening[J]. Scientia Horticulturae, 1996, 65: 239- 250.
  • 2Louw E D, Theron K I. Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy[J]. Postharvest Biology and Technology, 2010, 58: 176-184.
  • 3Shao Yongni, He Yong. Nondestructive measurement of acidity of strawberry using Vis/NIR speclroscopy[J]. International Journal of Food Properties, 2008, 11 ( 1 ): 102-111.
  • 4Sanchez M T, De la Haba M J, Benltez-Lopez M, et al. Non-destructive characterization and quality control of intact strawberries based on NIR spectral data[J]. Journal of Food engineering, 2012, 110(1): 102-108.
  • 5Borin A, Ferrao M F, Mello C, et al. Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk[J]. Analytica Chimica Acta, 2006, 579(1): 25 -32.
  • 6Xie Lijuan, Ying Yibin, Ying Tiejin. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics[J]. Journal of food engineering, 2009, 94(1): 34-39.
  • 7Shi Jiyong, Zou Xiaobo, Huang Xiaowei, et al. Rapid detecting total acid content and classifying different types of vinegar based on near infrared spectroscopy and least-squares support vector machine[J]. Food chemistry, 2013, 138(1): 192-199.
  • 8Liu Fei, Zhang Fan, Jin Zonglai, et al. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near-infrared spectroscopy[J]. Analytica Chimica Acta. 2008, 629(1/2): 56-65.
  • 9Niu Xiaoying, Zhao Zhilei, Jia Kejun, et al. A feasibility study on quantitative analysis of glucose and fructose in lotus root powder by FT-N1R spectroscopy and chemometrics[J]. Food chemistry, 2012, 133(2): 592-597.
  • 10Cozzolino D, Cynkar W U, Shah N, et al. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality[J]. Food Research International, 2011, 44(7): 1888- 1896.

引证文献2

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部