期刊文献+

小波分析在1/f噪声分析中的应用

Wavelet analysis in 1/f noise analysis application
下载PDF
导出
摘要 提出一种基于正交基展开方法的脉冲响应辨识方法——正交尺度变换法。这种方法以正交尺度函数展开的形式表示脉冲响应函数,对信号进行正交尺度变换,并使用最小二乘类参数辨识方法估计参数。这里提出的方法只需辨识g(t)在最大的尺度下的正交小波变换系数,使得辨识的计算量大大减少。仿真结果表明,在辨识所用的数据长度相同的前提下,该辨识方法不仅具有高精度,而且具有强跟踪参数变化能力。 The method of pulse response identification based on orthogonal expansion was proposed. This method expressed the pulse response function in the form of orthogonal scaling function expansion, carried on the orthogonal scaling transform to the signal, and used the least-squares parameter identification methods to estimate parameter of class. The method presented in this paper identified g(t) only in the largest scales of the orthogonal wavelet transform coefficients, which makes identification of the computation greatly reduced. The simulation result indicated that this identification method not only has a higher precision, but also has a stronger ability to change tracking parameters under the premise of the same data length.
作者 张菁 梁宝娟
出处 《电子设计工程》 2010年第7期80-81,共2页 Electronic Design Engineering
关键词 多分辨分析 正交尺度函数 正交尺度变换 脉冲响应 multi-resolution analysis orthogonal criterion function orthogonal scaling transform pulse response
  • 相关文献

参考文献5

二级参考文献16

  • 1方崇智 萧德云.过程辩识[M].北京:清华大学出版社,1988..
  • 2[3]Donoho D L.De-noising by soft-thresholding.IEEE Trans on IT,1995,41 (3):612-627.
  • 3[4]Vidakovic B,Lozoya C B.On time-dependent wavelet denoising[J]IEEE Trans.Signal processing 1998,46(9):2549-2551.
  • 4[5]Emanual Marom,Hanni Inbar.New interpretations of wiener filters for image recognition[J] J.Opt.Soc,Am,1996,A13:1325-1330.
  • 5方崇智,过程辨识,1988年
  • 6Skaloud J, Bruton A M, Schwarz K P. Detection and fitering of short-term (1/f') noise in inertial sensors[J]. Navigation, 1999, 46(2):97-107.
  • 7Stephen D S, Bruce D W. Electronic circuits and applications[M]. New York:John Wiley & Sons Inc,1975:564-567.
  • 8Wornell G W. Wavelet-based representations for the 1/f family of fractal processes [J]. Proceedings of IEEE, 1993, 81(10) :1428-1450.
  • 9Tewfik A H, Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion[J]. IEEE Transactions on Information Theory, 1992,38 (2): 904- 909.
  • 10Hirchoren G. A. Estimation of fractal signals using wavelets and filter banks[J]. IEEE Transactions on Signal Processing, 1998, 46(6) : 1624-1630.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部