期刊文献+

基于ARM的超声波发射与控制电路设计 被引量:13

Design of ultrasonic transmit and control circuit based on ARM
下载PDF
导出
摘要 提出了一种以基于ARM的超声波检测系统为背景,ARM微处理器S3C2440A为核心控制器,激励脉冲宽度、重复频率和电压幅度可调的超声波发射电路。该电路的高压电源采用一种可控高压电源设计方案,能输出0-1000V电压,重点分析了激励脉冲对超声波信号的影响、电路中各个元件对超声波激励脉冲的影响以及基于ARM的PWM控制脉冲的产生。从理论上得出发射电路中各个电阻与激励脉冲电压电流的数学关系,发射电路可以激励不同探头产生多种频率和发射功率可调的超声波。 In this paper, an ultrasonic transmit circuit controlled by ARM microprocessor S3C2440A is proposed. This circuit is based on an uhrasonic testing system which based on ARM. In this circuit, stimulant pulse width, repeated frequency and the range of voltage are adjustable. The circuit's high voltage power supply uses an adjustable high voltage power supply which produces 0-1000V voltage, this paper's emphasis is analyzing the ultrasonic signal affected by stimulant pulse, the ultrasonic stimulant pulse affected by every component in the circuit and the source of the PWM controlled pulse based on ARM. The interrelation between resistances of transmitting circuit and the voltage,current of the activation pulse is obtained theoretically, the transmit circuit can excite different probes to produce different ultrasonic, the frequency and the transmit power of the ultrasonic are adjustable.
出处 《电子设计工程》 2010年第7期148-150,共3页 Electronic Design Engineering
关键词 超声波检测 ARM 激励脉冲 发射电路 高压电源 ultrasonic testing ARM activation pulse transmit circuit high voltage power supply
  • 相关文献

参考文献4

二级参考文献19

  • 1杨小卫,严萍,孙鹞鸿,龚金水,邵建设.35kV/0.7A高压变频恒流充电电源[J].高电压技术,2006,32(5):54-56. 被引量:20
  • 2Schatz J E, Nelms R M. Design and analysis of the ward converter for capacitor charging applications[C]//IEEE Applied Power Electronics Conference. Busan, Korea: IEEE, 1991: 45- 51.
  • 3Strickland B E, Garbi M, Cathell F, et al. 2 kJ/s 25 kV high frequency capacitor charging power supply using MOSFET switches[C]//IEEE Power Electronic Specialists Conference. San,Diego, USA: IEEE, 1990: 531-534.
  • 4Lippincott A C, Nelms R M. A capacitor-charging power supply using a series-resonant topology, constant on-time variable frequency control, and zero-current switehing[J]. IEEE Transactions on Industrial Electronics, 1991, 38(6) :438-447.
  • 5Mangesh Borage, Sunil Tiwari, Swarna Kotaiah. Analysis and design of an LCL-T resonant converter as a constant-current power supply[J]. IEEE Transactions on Industrial Electronics, 2005, 52(6):1547-1554.
  • 6Borage M, Tiwari S, Kotaiah S. Constant-current, constantvoltage half-bridge resonant power supply for capacitor charging[J]. IEE Proc-Electr Power Appl, 2006, 153(3) : 343-347.
  • 7Pollock H. Constant frequency, constant current load-resonant capacitor charging power supply[J], lEE Proc Electr Power Apply, 1999, 146(2): 187-192.
  • 8Pollock H. High efficiency, high frequency power supplies for capacitor and battery charging[C]//IEE Colloquium on Power Electronics for Demanding Applications. Washington, America:IEE, 1999: 1-10.
  • 9Nelms R M, Schatz Joe E. A capacitor charging power supply utilizing a ward converter[J]. IEEE Transactions on Industrial Electronics, 1992, 39(5): 421-428.
  • 10Newsom R L, Dillard W C, Nelms R M. A capacitor charging power supply utilizing digital logic for power factor correction [J]. IEEE Trans on Power Electronic, 1997, 12(5): 1115- 1120.

共引文献35

同被引文献87

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部