期刊文献+

基于序贯蒙特卡洛法的自相关过程控制 被引量:2

Control of autocorrelation process based on sequential Monte Carlo method
下载PDF
导出
摘要 针对参数未知的自相关过程在线质量控制问题,研究了基于序贯蒙特卡洛法(SMC)的过程控制策略。在给出过程状态空间方程模型的基础上,分析了由于参数未知使得运用Kalman滤波求解控制策略时存在的困难;通过设置未知参数的先验分布,运用序贯蒙特卡洛法得到各参数的后验估计,进而获得了使过程损失最小的控制策略。给出了仿真,以分析控制策略的有效性,结果表明所得到的控制策略具有较好的控制效果。 Aiming at the online quality control problem in an autocorrelation process with unknown parameters, the control strategy based on the sequential Monte Carlo (SMC) method is studied. Based on the state space process control model, the difficulty caused by the unknown parameters in solving the control strategy using the Kalman filter is analyzed. The posterior estimations for each parameter are achieved by building the prior distributions for the unknown parameters and using the SMC method, and then the control strategy for minimizing the loss of process is obtained. The simulations are given to analyze the effectiveness of the approach. The results show that the control strategy obtained by the approach has a good control performance.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第6期647-650,共4页 Chinese High Technology Letters
基金 国家自然科学基金(70672088 70931002)资助项目
关键词 序贯蒙特卡洛法(SMC) 自相关过程 过程控制 质量控制 sequential Monte Carlo method(SMC), autocorrelation process, process control, quality control
  • 相关文献

参考文献12

  • 1Box G E P,Jenkins G M.Further contributions to adaptive quality control:simultaneous estimation of dynamics nonzero costs.Bulletin of the International Statistical Institute,1963,34:943-974.
  • 2Luceno A.Effects of adjustment errors on discrete feed-back dead band control schemes.The Statistician,2001,50(2):169-177.
  • 3Luceno A.Selection of sample size for discrete feedback dead-band control schemes.Communications in statistics-theory and methods,2001,30(4):679-689.
  • 4Luceno A.Minimum cost dead band adjustment schemes under tool-wear effects and delayed dynamics.Statistics and Probability Letters,2000,50:165-178.
  • 5Luceno A,Gonzalez F J.Effects of dynamics on the properties of feedback adjustment schemes with dead band.Technometrics,1999,41(2):142-152.
  • 6Lian Z,Del Castillo E.Adaptive deadband control of a drifting process with unknown parameters.Statistics and Probability Letters,2007,77(8):843-852.
  • 7Berger J O,Oliveira V D,Sansó B.Objective Bayesian analysis of spatially correlated data.Journal of the American statistical association,2001,96(456):1361-1374.
  • 8Qian P Z,Wu Jeff C.Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments.Technometrics,2008,50(2):192-204.
  • 9Spiegelhalter D J,Abrams K R,Myles J P.Bayesian Approaches to Clinical Trials and Health-care Evaluation.West Sussex:John Wiley & Sons,2004.168-174.
  • 10Cappé O,Godsill S J,Moulines E.An overview of existing methods and recent advances in sequential Monte Carlo.Proceedings of the IEEE Special Issue on Large-Scale Dynamic Systems,2007,95(5):899-924.

同被引文献23

  • 1Lio Y L, Park C. A bootstrap control chart for inverse Gaussian percentiles. Journal of Statistical Computation and Simulation, 2010, 80(3): 287 299.
  • 2Kandananond K. Evaluating the statistical process control performance tor momtormg salonary observations using Monte Carlo simulation. 2010 International Conference on Computer Infor- mation Systems and Industrial Management Applications, CISIM 2010, Krackow, Poland: IEEE Computer Society, 2010, 182-186.
  • 3Li Z H, Luo Y Z, Wang Z J. Cusum of Q chart with variable sampling intervals for monitoring the process mean. International Journal of Production Research, 2010, 48(16): 4861 4876.
  • 4Wang W B. A simulation-based multivariate Bayesian control chart for real time Condition based maintenance of complex systems. European Journal of Operational Research, 2012, 218: 726-734.
  • 5Madbuly D F, Maravelakis P E, Mahmoud M A. The effect of methods for handling missing values on the performance of the Mewma control chart. Communications in Statistics: Simulation and Computation, 2013, 42(6): 1437-1454.
  • 6Arab A, Rigdon S E, Basu A P. Bayesian inference for the piecewise exponential model for the reliability of multiple repairable systems. Journal of Quality Technology, 2012, 44(1): 28-38.
  • 7Jeremiah E W, Sisson S A, Sharma A, Marshall L. Efficient hydrological model parameter op- timization with Sequential Monte Carlo sampling. Environmental Model ling & Software, 2012, 38:283 295.
  • 8Christoph M, Riittinga T, Kattgeb J, Laughlinc R J, Stevensc R J. Estimation of parameters in complex tracing models by Monte Carlo sampling. Soil Biology & Biochemistry, 2007, 39: 715 726.
  • 9BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML. Guide to the expression of uncertainty in measurement. Corrected and reprinted 2008. Geneve: ISO, Switzerland, 2008.
  • 10BIPM/JCGM. Evaluation of Measurement Data - Supplement 1 to the 'Guide to the Expression of Uncertainty in Measurement' - Propagation of Distributions using a Monte Carlo method. Draft Supplement I. Geneve: ISO, Switzerland, 2006.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部