摘要
文章给出了带有分数布朗运动的随机延迟LotKa-Volterra模型dx(t)=diag(x1(t),…,xn(t))[(b+Ax(t-τ)dt+σx(t)dBtH],利用It形式,Barkholder-Davis-Gundy不等式,Chebyshev不等式,讨论了随机延迟LotKa-Volterra的有界性.得到的结果显示环境噪声不仅可以抑制人口爆破,而且使得其解是随机毕竟有界.
In this paper,a stochastic delay Lotka-Volterra model with fractional Brownian motion dx(t)=diag(x1(t),…,xn(t))[(b+Ax(t-τ)dt+σx(t)dBHt],is established.By utilizing It formula,Barkholder-Davis-Gundy′s inequality,Chebyshev′s inequality,we discusse boundedness of stochasitc delay Lotka-Volterra model.We conclude that the environmental noise not only can suppress a potential population explosion,but will also make the sol utions to be stochastically ultimately bounded.
出处
《太原师范学院学报(自然科学版)》
2010年第2期10-14,共5页
Journal of Taiyuan Normal University:Natural Science Edition
基金
教育部重点基金资助项目(208160)
宁夏自然科学基金资助项目(NZ0835)