期刊文献+

带分数布朗运动的随机时滞Lotka-Volterra模型的有界性

Boundedness of Stochastic Delay Lotka-Volterra Model with Fractional Brownian Motion
下载PDF
导出
摘要 文章给出了带有分数布朗运动的随机延迟LotKa-Volterra模型dx(t)=diag(x1(t),…,xn(t))[(b+Ax(t-τ)dt+σx(t)dBtH],利用It形式,Barkholder-Davis-Gundy不等式,Chebyshev不等式,讨论了随机延迟LotKa-Volterra的有界性.得到的结果显示环境噪声不仅可以抑制人口爆破,而且使得其解是随机毕竟有界. In this paper,a stochastic delay Lotka-Volterra model with fractional Brownian motion dx(t)=diag(x1(t),…,xn(t))[(b+Ax(t-τ)dt+σx(t)dBHt],is established.By utilizing It formula,Barkholder-Davis-Gundy′s inequality,Chebyshev′s inequality,we discusse boundedness of stochasitc delay Lotka-Volterra model.We conclude that the environmental noise not only can suppress a potential population explosion,but will also make the sol utions to be stochastically ultimately bounded.
作者 刘萍 张启敏
出处 《太原师范学院学报(自然科学版)》 2010年第2期10-14,共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 教育部重点基金资助项目(208160) 宁夏自然科学基金资助项目(NZ0835)
关键词 分数布朗运动 毕竟有界 Lotka-Voltreea模型 爆破 fractional Brownian motion ultimate boundedness Lotka-Volterra explosion
  • 相关文献

参考文献11

  • 1He X,Gopalsamy K.Persistence,attractivity,and delay in facultative mutualism[J].J.Math.Anal.Appl.,1997,215:154-173.
  • 2Butler G,Freedman H I,Waltman P.Uniformly persistence systems[J].Proc.Amer.Math.SOc.1986,98:425-430.
  • 3Hutson V,Schmitt K.Permanence and the dynamics of biological systems[J].Math.Bioscj,1992,111:1-71.
  • 4Mao X,Marion G,Renshaw E.Environmental Brownian noise suppresses explosions in population dynamics[J].Stochastic Processes and Their Applications,2002,97:95-110.
  • 5Bahar A,Mao X.Stochastic delay Lotka-Voherra model.[J].Mathematical Analysis and Applications,2004,292:364-380.
  • 6Mao X,Sabanis S,Renshaw E.Asymptotic behaviour of the stochastic Lotka-Volterra model[J].Mathematical Analysis and Applications,2003,287:364-380.
  • 7Fei D,Qi L,Mao X,et al.Moise suppresses pr expresses exponential growth[J].Systems & Control Letters,2008,57:262-270.
  • 8Freedman H I,Ruan S.Uniform persisttence in functional differential equations[J].J.Differential Equations,1997,115:173-192.
  • 9Gopalsamy K.Stability and Oscillations in delay differential equations of populations of population dynamics[J].Dordrecht:Kluwer Academic,1992.
  • 10Kuang Y.Delay differential equations with applications in population dynamics[M].Boston:Academic Press,1993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部