期刊文献+

基于视频片段的视频检索 被引量:4

Video retrieval based on video clip
下载PDF
导出
摘要 为提高视频检索的查询效率,提出一种基于视频片段的视频检索方法。该方法利用相邻帧之间的HIS(Hue,Saturation,Intensity)颜色信息特征将视频流分割成子片段,并采用高维索引结构Vector-Approximation Trie(VA-Trie)来组织视频子片段,然后,利用空间和纹理特征定义视频片段的相似度模型,在此基础上采用基于限定性滑动窗口的高效视频检索算法进行视频片段检索。研究结果表明:与其他检索方法相比,该方法能有效地提高视频检索的查全率和查询率,适合用于运动视频检索。 A video retrieval method based on video clip was presented to enhance the retrieval efficiency. The video stream was segmented into segments by HSI (Hue,Saturation,Intensity) color information between neighboring frames,and the high-dimensional index structure Vector-Approximation Trie (VA-Trie) was adopted to organize the segments. The new similarity model was defined using spatial and texture features,which can fully take into account the temporal order among video segments. Furthermore,the new query algorithm was used for video retrieval based on restricted sliding window to improve the retrieval accuracy. Experimental results indicate that the proposed approach can improve the recall ratio and precision ratio effectively,and suits the retrieval of sports videos.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期1009-1014,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(79816101)
关键词 视频片段检索 高维索引结构 K近邻查询 相似度度量 空间和纹理特征 video clip retrieval high-dimensional index structure k-nearest neighbor query similarity measure spatial and texture features
  • 相关文献

参考文献15

二级参考文献71

  • 1陈科庆,何茂军.彩色图像分割综述[J].湖北师范学院学报(自然科学版),2004,24(4):32-36. 被引量:8
  • 2[1]Rui, Y., Huang, T.S. A uniform framework for video browsing and retrieval. In: Bovik, A., ed. The Image and Video Processing Handbook. Academic Press, 2000. 705~715.
  • 3[2]Ngo, C.W., Pong, T.C., Zhang, H.J., et al. Motion-Based video representation for scene change detection. In: Proceedings of the ICPR 2000. Barcelona, Spain, 2000.
  • 4[3]Irani, M., Anandan, P. Video indexing based on mosaic representations. Proceedings of the IEEE, 1998,86:905~921.
  • 5[4]Zhao, L., Qi, W., Li, S.Z., et al. Key-Frame extraction and shot retrieval using nearest feature line (NFL). In: Proceedings of the International Workshop on Multimedia Information Retrieval, in Conjunction with ACM Multimedia Conference 2000. Los Angeles, USA, 2000.
  • 6[5]Hanjalic, A., Lagendijk, R.L., Biemond, J. Automated high-level movie segmentation for advanced video-retrieval systems. IEEE Transactions on Circuits and Systems for Video Technology, 1999,9(4):580~588.
  • 7[6]Corridoni, J.M., Bimbo, A.D. Structured representation and automatic indexing of movie information content. Pattern Recognition, 1998,31(12):2027~2045.
  • 8[7]Rui, Y., Huang, T.S., Mehrotra, S. Exploring video structure beyond the shots. In: Proceedings of the IEEE Conference on Multimedia Computing and Systems. 1998. 237~240.
  • 9[8]Kender, J.R., Yeo, B.L. Video scene segmentation via continuous video coherence. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1998. 367~373.
  • 10[9]Ferman, A.M., Krishnamachari, S., Tekalp, A.M., et al. Group-of-Frames/pictures color histogram descriptors for multimedia applications. In: Proceedings of the ICIP 2000. 2000.

共引文献95

同被引文献32

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部