期刊文献+

增长曲线模型(一般协方差结构)的Bayes影响分析(英文) 被引量:2

Bayesian Influence Assessments in a Growth Curve Model with General Covariance Structure
下载PDF
导出
摘要 本文讨论具有一般协方差结构的增长曲线模型中未知参数矩阵的Bayes影响分析问题.在无信息先验分布假设下,K-L距离被用来评估指定响应阵对参数矩阵的后验分布的影响程度. The problem considered here is to assess the Bayesian influence on the unknown param- eter matrices in a grwoth curve model with the general covariance structure. Under the non- information prior distribution assumption, the Kullback-Leibler divergence is employed to eval- uate the effect of a designated response matrix on the posterior distribution of the parameter matrix
机构地区 云南大学
出处 《应用概率统计》 CSCD 北大核心 1999年第1期53-62,共10页 Chinese Journal of Applied Probability and Statistics
关键词 增长曲线模型 协方差结构 贝叶斯影响分析 Groveth Curve Model, General Covariance Structure, Prior and Posterior Dis- tribution, Kullback-Leibler Divergence.
  • 相关文献

参考文献2

二级参考文献2

  • 1潘建新,应用概率统计,1991年,3卷,239页
  • 2王松桂,线性模型的理论及其应用,1987年

共引文献2

同被引文献8

  • 1白鹏,费宇.BAYESIAN LOCAL INFLUENCE ASSESSMENTS IN A GROWTH CURVE MODEL WITH GENERAL COVARIANCE STRUCTURE[J].Acta Mathematica Scientia,2000,20(4):563-570. 被引量:1
  • 2潘建新,白鹏.矩阵t-分布的渐近分布[J].云南大学学报(自然科学版),1995,17(2):181-184. 被引量:3
  • 3Cook P D.Assessment of local influence. Journal of the Royal Statistical Society . 1986
  • 4Beisser,S.On the prediction of observables: aslective update. Bayesian Statistics . 1985
  • 5Okamato M.Distinctness of the eigenvalues of a quadratic form in & multivariate sample. The Annals of Statistics . 1973
  • 6Shi J,Wei B.Assessing local influence in a Bayesian analysis. The Fourth China-Japan Symposium on Statistics . 1991
  • 7Rao C R.The thorey of least squares when the parameters are stochastic and its application to the analysisof growth curves. Biometrika . 1965
  • 8Potthoff R F,Roy S N.A generallied multivariate analysis of Variance model useful especially for growthcurve problems. Biometrika . 1964

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部