摘要
本文讨论型为2nt1的有对称正交侣的带洞自正交拉丁方(HSOLSSOM(2nu1))的谱.证明当n≤9时,HSOLSSOM(2nu1)存在的充分必要条件是u为偶数且;当n≥263时,若u为偶数且n≥2(u-2),则HSOLSSOM(2nu1)存在.
In this paper, we study the spectrum of holey self-orthogonal latin square with a symmetric orthogonal mate of type 2nu1 (HSOLSSOM(2nu1)) and show that for n≤9. an HSOLSSOM(2nu1) exists if and only if u is even and for n≥263. an HSOLSSOXI(2nu1) exists if u is even and n≥2(u-2).
出处
《数学进展》
CSCD
北大核心
1999年第1期41-46,共6页
Advances in Mathematics(China)
关键词
自正交拉丁方
拟群
可分组设计
谱
拉丁方
self orthogonal latin square
quasigroup
group divisible design
transversal design