摘要
本文证明了符号空间中存在混沌集S1,S2分别满足S1R(σ)-W(σ)和S2W(σ)-AP(σ),并证明了具有伪轨跟踪性质的紧致度量空间上的连续满射f,以下条件互相等价:1)CR(f)≠R(f)2)R(f)≠W(f)3)W(f)≠AP(f)
In this note we discuss the chaotic behaviors of the weakly almost periodic points on the symbolic space. We have proved that the one side shift is chaotic in the sense of Li Yorke and there are two chaotic sets S 1,S 2 satisfying:S 1R(σ)-W(σ),S 2W(σ)-AP(σ).Furthermore, we proved if a self continuous map f has pseudo orbit tracing property, the following conditions 1),2),3)are equivalent. 1) CR(f)≠R(f) 2)R(f)≠W(f) 3)W(f)≠AP(f)
出处
《数学杂志》
CSCD
1999年第1期56-60,共5页
Journal of Mathematics
关键词
弱几乎周期点
伪轨跟踪性质
紧致度量空间
weakly almost periodic point
chaotic set
pseudo orbit tracing property,
one side shift