摘要
设X是一致凸空间,G为X中太阳集,R.Smarzewski[1]证明了g∈G对x∈的最佳逼近具有广义强唯一性,本文讨论其逆,在最佳逼近是广义强唯一的条件下,研究了空间的凸性和逼近集的太阳性.
Let X be a uniformly convex space, G a sunset of X. R.Smarzewski[1] proved that a best approximation g∈ G to element x∈ X must have the generalized strong unicity.In this paper,we study the inverse problem, that is, under the condition that the best approximation is a generalized strongly unique best approximation, we study the convexity of spaces and the solar properties of approximation sets.
出处
《系统科学与数学》
CSCD
北大核心
1999年第1期51-55,共5页
Journal of Systems Science and Mathematical Sciences
关键词
非线性
最佳逼近
广义强唯一性
巴拿赫空间
Nonlinear best approximation, uniformly convex space, generalized strongunicity, sun set