摘要
设Fq是有q=2t个元的有限域.本文利用Fq上奇异辛几何和奇异伪辛几何理论,给出当A,C是Fq上对称矩阵时,Fq上适合XAXT=C的解存在的充要条件以及秩k的解X和解X的个数的明显公式,并且用q超几何级数简化表达解数公式.
Let Fq be a finite field with q=2t elements. In this paper, using singular symplectic and singular pseudo-symplactic geometry over Fq, we have given the sufficient and necessary condition of there exists solutions and the number of solutions X of rank k and solutions X to the equation XAXT=B over Fq. when A and B are symmetric matrices. Finally. we have obtained simple representations of enumerational formulas by q-hypergeometric series.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1999年第1期23-34,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
河北省教委科研项目
关键词
对称矩阵方程
Q超几何级数
有限域
计数公式
解
Symmetric matrix equation, Singular symplectic space, Singular pseudosymplectic space, q-hypergeometric series