期刊文献+

太阳能腔式吸热器沸腾传热性能研究 被引量:2

A STUDY ON BOILING HEAT TRANSFER OF SOLAR CAVITY RECEIVER
原文传递
导出
摘要 腔式吸热器是太阳能塔式热发电系统中光热转换的重要设备,由于其长期在高密度、非均匀辐射热流条件下工作,因此对其性能进行研究具有重要意义。本文对腔式吸热器的整体结构和吸热面进行了设计,采用改进的蒙特卡罗法与对流换热耦合的方法模拟了腔体内部热流密度分布,分析了吸热管束内部汽液两相流的流量、温度、以及管壁表面温度等参数的变化规律,从而对不同位置的换热系数进行预测,比较全面地认识吸热器整体性能。 As an important light-energy-to-thermal-energy convector in the tower solar thermal power plant system, a solar cavity receiver is apt to be operated under the condition of high-density, non-uniform heat radiation flux frequently. So it is significant to understand the mechanics of boiling heat transfer in it for its design. In this paper, after a prototype of the cavity receiver and its inner heated surface are determined, a model of simulating its inner heat flux is proposed by using the modified Monte Carlo method coupled with the convection heat transfer. The influences of flow rate, fluid temperature involved in vapor-liquid two-phase flow, and the tube wall temperature are accounted for. The profile of heat transfer coefficient can be obtained at any position along the flow direction. That will help us to have more comprehensive understanding about the overall heat transfer performance of the solar cavity receiver.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第7期1151-1154,共4页 Journal of Engineering Thermophysics
基金 国家863重点项目(No.2006AA050103) 国家973项目(No.2010CB227102)
关键词 换热系数 蒙特卡罗法 腔式吸热器 heat transfer coefficient Monte Carlo method solar cavity receiver
  • 相关文献

参考文献10

  • 1杨敏林,杨晓西,左远志.塔式太阳能热发电吸热器技术研究进展[J].科学技术与工程,2008,8(10):2632-2640. 被引量:30
  • 2Kandlikar S G. Development of a Flow Boiling Map for Subcooled and Saturated Flow Boiling of Different Fluids Inside Circular Tubes [J].Heat Transfer, 1991, 113: 190- 200.
  • 3Kandlikar S G. Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling [J]. Heat Transfer, 1998, 120:395-401.
  • 4Prodanovic V, Fraster D, Salcndean M. On the Transition From Partial to Fully Developed Flow Boiling [J]. Int. J. Heat Mass Transfer, 2002, 45:4727-4738.
  • 5Chapman A J. Heat Transfer [M]. New York: Collier McMillan, 1984.
  • 6Hsu Y Y. On the Size Range of Active Nucleation Cavities on a Heating Surface [J]. ASME Journal of Heat Transfer, 1962, 84:207-216.
  • 7Shah M. A General Correlation for Heat Transfer During Subcooled Boiling in Pipes and Annuli [J]. ASHRAE Trans., 1977 83(Part1): 205-215.
  • 8Saha P, Zuber N. Point of Net Vapor Generation and Vapor Void Fraction in Subcooled Boiling [C]//Proceedings of 5th International Heat Transfer Conference. Tokyo, 1974. B4.7:175-179.
  • 9Kandlikar S G. A General Correlation for Saturated Two- phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes [J]. ASME Journal of Heat Transfer, 1990, 112:219 228.
  • 10Baker A F, Faas S E, Radosevich L G, et al. Evaluation of the Solar one and CESA- I Receiver and Storage Systems [M]. U. S. -Spain, 1989.

二级参考文献50

  • 1[1]Romero M,Buck R,Pacheco J E.An update on solar central receiver systems,projects and technologies.ASME J Sol Energy Eng,May 2002; 124:98-108
  • 2[2]Geyer M.International market introduction of concentrated solar power-policies and benefits.Proceedings of ISES Solar World Congress 2007:Solar Energy and Human Sottlement,Sep.2007,Beijing,China.75-82
  • 3[3]Quaschning V,Muriel M B.Solar power-photovoltaics or solar thermal power plants.VGB Congress Power Plants 2001.Brussels,October 2001:10-12
  • 4[4]Price H W,Carpenter S,The potential for low-cost concentrating solar power systems.NREL/CP-550-26649,May 1999
  • 5[5]Morse F H.The commercial path forward for concentrating solar power technologies.Morse Association,Inc.Washington,DC,13 December 2000
  • 6[6]Kolb G J.Methods for reducing parasitic energy consumption associated with the use of molten salt at the solar two power tower.Proceedings of the ASES/AIA and ASMESOlar Engineering Division:Solar Powers Life-Share The Energy (Solar 2000) June 16-20,Madison,Wisconsin,2000
  • 7[7]Goods S H,Bradshaw R W.Constant extension rate testing of IN625LCF in molten nitrate salt.SANDIA REPORT,SAND98-8409,1998
  • 8[8]Pacheco J E,Ralph M E,Chavez J M.Results of using molten salt panel and component experiment for solar central receiver:cold fill,freeze/thaw,thermal cycling and shock,and instrument test.SAND94-2525,1994
  • 9[9]Bradshuw R W,Carling R W.A review of the chemical and physical pmporties of molten alkali nitrate salts and their effect on materials used for solar central receivers.Sandiu National Laboratories,SAND87-8005,1987
  • 10[10]Goods S H.Slow strain rate testing of 21/4 Cr-1 Mo in molten nitrate salt.Sandia National Laboratories,SAND83-8214,1983

共引文献29

同被引文献15

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部