摘要
本文研究半线性热方程的初值问题u_t-△u=u~γ+cu,(γ>1);u(x,0)=(x)非负整体L^P解的存在性与非存在性.首先证明,若C>0,则不存在非负整体解.而后,对C<0情形给出了解的整体存在与非存在的充分条件,特别证明了,若P>(γ一1)或,则当。充分小时存在非负整体L^P解.最后,对系数C和初值(x)得到无穷多个门槛结果.
This paper studes the existence and nonexistence of nonnegative global LPsolutions for the initial value problem of semilinear heat equations ut -△u = uγ + cu,(γ> l), u(x, 0) = (x). First proves that if c >0 then there are no nonnegative globalsolutions. Next for the case c<0 gives the sufficient conditions of global existence andnonexistence of solutions, in particular proves that if or ,then when is sufficiently small there exist nonnegative global LP solutions. Finallyobtains ifinit threshold results for the coefficient c and the initial data (x).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1999年第2期321-326,共6页
Acta Mathematica Sinica:Chinese Series
关键词
半线性热方程
初值
整体解
存在性
非存在性
Semilinear heat equation
Initial value
Global solution
Existence
Nonexistence