期刊文献+

基于标签树的粗糙集模型LTRS 被引量:2

Rough set model based on the labelled tree
下载PDF
导出
摘要 为了刻画和处理半结构化数据的含糊、不确定性问题,针对这类半结构化数据模型中所蕴含的组成结构和内容信息,扩展了传统的粗糙集模型,提出了一种基于标签树的粗糙集模型LTRS(labelled tree rough set model)。利用标签树的结构和内容,重新定义了等价关系、不可区分关系、上、下近似集合等粗糙集基本概念。进一步描述了区分矩阵和决策规则,并且以某地区的流行性乙型脑炎个案XML调查表组成的标签树信息系统为例,依据定义给出了决策规则的抽取,所产生的规则可用于指导乙型脑炎的临床分型。 In order to characterize and deal with the vagueness and uncertainty of structured data as well as the compositions and contents implied within semi-structured data models,a labelled tree rough set model(LTRS) was presented by extending the traditional rough set model.Making use of the structure and content of the labelled tree,the basic concepts of rough set were redefined,such as equivalence relation,indiscernibility relation,upper approximation and lower approximation,etc.Furthermore,the discernibility matrix and decision rules were described.Using the labeled tree constructed by XML case questionary of epidemic encephalitis B from some area as an example,the extraction method of decision rules was presented based on the definitions given above.The decision rules produced by LTRS can be used to guide the clinic classification in the case of epidemic encephalitis B.
出处 《通信学报》 EI CSCD 北大核心 2010年第6期35-43,共9页 Journal on Communications
基金 国家科技支撑计划资助项目(2006BAK01A33) 吉林省科技发展计划资助项目(20070321)~~
关键词 粗糙集 标签树 XML 决策规则 rough set labelled tree XML decision rules
  • 相关文献

参考文献19

  • 1ZAKIM J.Effciently mining frequent trees in a forest[A].Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].New York:ACM Press.2002.71-80.
  • 2赵传申,孙志挥,张净.基于投影分支的快速频繁子树挖掘算法[J].计算机研究与发展,2006,43(3):456-462. 被引量:14
  • 3ZAKI M J,AGGARWAL C.XRules:An effective structural classifier for XML data[A].Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Washington,DC,USA:ACM Press,2003.316-325.
  • 4THEOBALD M,SCHENKEL R,WEIKUM G Exploiting structure,annotation,and ontological knowledge for automatic classification of xml data[A].Proceedings of the 6th Internation Workshop on the Web and Databases[C].San Diego,California,USA,2003.
  • 5DENOYER L,GALLINARI P.Bayesian network model for semi-structured document classification[J].Information Processing and Management.In Information Processing and Management:an International Journal,Special Issue:Bayesian Networks and Informationretrieval,2004,40(5):807-827.
  • 6袁家政,须德,鲍泓.基于结构与文本关键词相关度的XML网页分类研究[J].计算机研究与发展,2006,43(8):1361-1367. 被引量:13
  • 7LIAN W,CHEUNG D W,MAMOULIS N,ZIU S M.An efficient and scalable algorithm for clustering XML documents by structure[J].IEEE Transactions and Knowledge Data Engineering,2004,16(1):82-96.
  • 8吴扬扬,雷庆,陈锻生,YOKOTA Harou.一种从XML数据中发现关系信息的方法[J].软件学报,2008,19(6):1422-1427. 被引量:10
  • 9PAWLAK Z.Rough sets[J].International Journal of Computer and Information Science,1982,11(5):341-356.
  • 10JELONEK J,KRAWIEC K,SLOWINSKI R.Rough set reduction of attributes and their domains for neural networks[J].Computational Intelligence,1995,11(2):339-347.

二级参考文献47

  • 1朱永泰,王晨,洪铭胜,汪卫,施伯乐.ESPM——频繁子树挖掘算法[J].计算机研究与发展,2004,41(10):1720-1727. 被引量:18
  • 2杨明.一种基于改进差别矩阵的核增量式更新算法[J].计算机学报,2006,29(3):407-413. 被引量:76
  • 3王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 4苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 5G Salton. Automatic Text Processing [M]. New York:Addison-Wesley, 1989
  • 6T Joachims. Making large-scale SVM learning practical [G].In: B Schokopf, C Burges, A Smola, eds. Advances in Kernel Methods Support Vector Learning. Cambridge, MA. USA:MIT Press, 1999
  • 7D D Lewis, R E Schapore, J P Callan, et al. Training algorithms for linear text classifiers [C]. The 19th Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, Zurich, 1996
  • 8W W Cohen, Y Singer. Context-sensitive learning methods for text categorization [C]. The 19th Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, Zurich,1996
  • 9Joerg Leukel, Volker Schmitz, Frank-Dieter Dorloff. Modeling and exchange of product classification systems using XML [C].The 4th IEEE Int'l Workshop on Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS2002), Newport Beach, California, USA, 2002
  • 10M J Zaki, C C Aggarwal. XRules: An effective structural classifier for XML data [C]. Int'l Conf on Knowledge Discovery and Data Mining (SIGKDD' 03), Washington, D C,2003

共引文献661

同被引文献25

  • 1Pawlak Z, Rough sets[J]. International Journal of Computer andInformation Science, 1982,11(5) :341-356.
  • 2苗守谦,李道国.粗糙集理论、算法与应用[M].北京:淸华大学出版社,2008:1-218.
  • 3Kryszkiewicz M. Rough set approach to incomplete informationsystems[j]. Information Sciences. 1998. 112(4) : 39-49.
  • 4Yang Xiao-ping. An improved model of rough sets on incompleteinformation systems [C] // The International Conference onManagement of E-Commerce and E-Government. 2009: 193-196.
  • 5Hung E, Getoor L, Subrahmanian V S. Probabilistic intervalXML[J]. ACM Transactions on Computational Logic, 2007,8(4):24.
  • 6Kimelfed B,Sagiv Y. Modeling and querying probabilistic XMLdata[C] // Special Interest Group on Management of Data Con-ference. 2008:701-714.
  • 7Abiteboul S,Chan T-H Huber,Kharlamov E. Aggregate queriesfor discrete and continuous probabilistic XML[C]/yThe 13th In-ternational Conference of Database Theory. Lausanne, Switzer-land,2010:50-61.
  • 8殷丽凤,郝忠孝.XML强函数依赖的推理规则[J].计算机科学,2008,35(9):165-167. 被引量:9
  • 9殷丽凤,郝忠孝.XML强闭包依赖的研究[J].计算机科学,2008,35(11):195-198. 被引量:9
  • 10刘后胜,熊范纶,李绍稳.基于限制容差关系的不完备信息系统粗集模型拓展[J].生物数学学报,2008,23(3):534-538. 被引量:5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部